
Web Services

Web Services v4.0.5

Web Services: Web Services v4.0.5
Copyright © 2011 Standards for Technology in Automotive Retail
Editor:
David Carver, STAR

Jason Loeffler, Karmak

Contributors:
Ramesh Rangaiah, Navistar

Pejavar Rao, Navistar

Andrew Selletta, ADP

Hector Rivas, PACCAR

William Fitzpatrick, NADA

v

Table of Contents
I. Preface ... xiii

I.I. Purpose ... xiii
I.II. Scope .. xiii
I.III. Audience .. xiv
I.IV. Background .. xiv
I.V. Service Provider Requirements ... xiv
I.VI. Communication Patterns Overview ... xv

Part I. STAR Level One .. 1
1. STAR Web Services Overview .. 3

1.1. Background .. 3
1.2. STAR Web Services Types ... 3
1.3. Web Service Interoperability Requirements .. 3

2. Common Components .. 5
2.1. Overview .. 5
2.2. Message Packaging ... 5

2.2.1. Notes Regarding Payloads and Attachments ... 7
2.3. Namespaces .. 7
2.4. Web Methods ... 8

2.4.1. ProcessMessage .. 8
2.4.2. PutMessage .. 10
2.4.3. PullMessage ... 11

2.5. The payload Manifest SOAP Header .. 14
3. Communication Patterns ... 17

3.1. One-Way Communication .. 17
3.1.1. One-Way Synchronous Communication ... 17
3.1.2. One-Way Asynchronous Communication ... 17

3.2. Two-Way Communication ... 18
3.2.1. Two-Way Synchronous Communication .. 18
3.2.2. Two-Way Asynchronous Communication .. 18

4. Generic Web Services Specifications .. 21
4.1. Overview .. 21
4.2. Generic WSDL ... 21
4.3. Benefits and Considerations ... 21
4.4. Pull Web Service Filter Criteria ... 22

4.4.1. Filter Elements ... 22
4.5. Generic WSDL Example ... 25

5. BOD Specific Web Service Specifications ... 27
5.1. Overview .. 27
5.2. BOD Specific WSDLS .. 27
5.3. Benefits and Considerations ... 27
5.4. BOD Specific WSDL Example .. 28

6. Error Handling ... 31
6.1. HTTP Errors, SOAP Faults, and BOD Level Errors .. 31

6.1.1. General Principles .. 31
6.1.2. Spectrum of Error Types ... 31
6.1.3. HTTP Errors .. 32

Web Services

vi

6.2. SOAP Faults ... 33
6.2.1. Sample Error Cases .. 35

6.3. Application Level Errors ... 37
7. Security ... 39

7.1. Overview .. 39
7.2. WS-I Basic Security Profile ... 39
7.3. WS-Security SOAP Header ... 40
7.4. Authentication ... 40

7.4.1. Username and Password ... 40
7.4.2. The Username element ... 41
7.4.3. Plain Text Password ... 41
7.4.4. Password Digest ... 42

7.5. Security Error Handling ... 43
Part II. STAR Level Two ... 45

8. Enhanced Security ... 47
8.1. Overview .. 47
8.2. WS-I Conformance Claim ... 47

8.2.1. WS-I Basic Security Profile .. 48
8.3. Digital Certificates .. 49

8.3.1. Certificate Sources .. 49
8.4. Attachment Security .. 55

9. Reliable Messaging .. 57
9.1. Overview .. 57

9.1.1. Terms and Definitions .. 57
9.1.2. Reliable Messaging Namespaces ... 58

9.2. Reliable Messaging Construct .. 58
9.2.1. Message Sequencing ... 59
9.2.2. WS-MakeConnection and Non-Addressable End Points 61
9.2.3. WS-ReliableMessaging Standardized Error Handling and Monitoring 62

9.3. Meeting STAR Guidelines Requirements .. 63
9.3.1. Message Assurance Profiles .. 63
9.3.2. WS-ReliableMessaging Delivery Assurance Features 64
9.3.3. WS-ReliableMessaging Message Integrity .. 65

9.4. STAR Web Service Requirements .. 65
10. Attachments ... 67

10.1. MTOM/WS-Attachments ... 67
10.2. Attachment Element .. 68

10.2.1. MTOM Attachments ... 68
STAR Interoperability Rules .. 73
A. STAR Level One Check List ... 77

A.1. Check List ... 77
Normative References .. 81
Non-Normative References ... 83

vii

List of Figures
2.1. Message Structure ... 6
2.2. Manifest ... 6
2.3. Process Message ... 9
2.4. ProcessMessage with Errors .. 10
2.5. ProcessMessage with Application System Errors ... 10
2.6. Successful PutMessage Sequence ... 11
2.7. PullMessage Structure ... 12
2.8. Successful PullMessage Operation ... 14
2.9. Payload Manifest .. 14
3.1. One-way Asynchronous Communication .. 18
3.2. Two-way Asynchronous Communication .. 19
4.1. PullMessage Filter Type .. 22
4.2. Generic Transport ... 25
4.3. Generic Payload Element Definition .. 25
4.4. Generic Element ... 26
5.1. WSDL Directory Structure .. 28
5.2. BOD Specific Service and Operations .. 29
5.3. BOD Specific Process Message Definition ... 29
5.4. BOD specific strongly typed payload ... 29
6.1. Spectrum of Error Types by Communication Mechanism .. 32
8.1. Example of Certificate Signed by Third Party CA ... 50
8.2. Example of Certificate Signed by Private CA ... 51
8.3. Example of Self-Signed Certificate .. 53
8.4. Example of Self-Signed Certificate Imported .. 54
9.1. Reliable Messaging Conversation Sequence .. 60

viii

ix

List of Tables
6.1. STAR Standard Soap Faults .. 33
A.1. STAR Level 1 Check List .. 77

x

xi

List of Examples
2.1. Sample STAR Web Service Message ... 7
2.2. SOAP Body Message .. 9
2.3. SOAP Message ... 11
2.4. SOAP Message with Filter .. 13
4.1. Sample Generic Message ... 26
6.1. Sample SOAP Fault .. 34
7.1. Sample of WS-Security ... 40
7.2. WS-Security Username and Passoword .. 41
7.3. Username Element .. 41
7.4. Dealer Number ... 41
7.5. Unique ID that Identifies Dealer .. 41
7.6. Combination Dealer Number and ID .. 41
7.7. Plain Text Password .. 42
7.8. Password Digest .. 42
8.1. WS-I Basic Security Profile Conformance Claim .. 48
9.1. Reliable Messaging Create Sequence ... 60
9.2. Reliable Messaging Header Acknowledgements .. 61
9.3. Reliable Messaging Header Message Sequence Number .. 61
10.1. Sample Message with Attachment .. 68
10.2. WSDL MTOM Encoding .. 69
10.3. MTOM encoded attachment ... 70
10.4. STAR MTOM encoded Attachment Element .. 71

xii

xiii

Preface

I.I. Purpose
The purpose of this document is to provide specifications and implementation guidelines for the STAR
Web Service components.

This document is broken into the following sections for easier navigation:

• Preface - Overview of the specifications and background

• Introduction - Background and general document overview

• Part I - STAR Level 1

• Interface Specifications

• Communication Patterns

• Reliable Messaging

• Error Handling

• Security

• Part II - STAR Level 2 (Still in development)

• WS-Addressing

• WS-ReliableMessaging

• Attachments - MTOM

• Security

• Applying Policy

I.II. Scope
This document covers the STAR Web Services interfaces specifications including the WSDL, message
packaging, web methods, and different communication patterns. It also covers the STAR Web Services
security specifications, based on OASIS WS-Security 1.0. This document does not address Identity, Au-
thentication, Privacy, Content Integrity, Non-Repudiation and Trusted Timestamps. Versioning, Policy
and Reliable messaging are also covered.

The following items have been defined as out of scope:

• Non-repudiation will be discussed under Auditing in a future release of these guidelines.

Audience

xiv

• Authorization, Trust Models and Attack Prevention are out of the scope for this release of the STAR
Transport Guidelines and may be discussed in future releases of this guideline.

• Intermediaries, message routing, and other approaches to enhance or optimize the communication are
also out of the scope of this document.

Note

This document is still under development. STAR Level 1 requirements have been added, but
additional changes maybe necessary. The namespace will not change as additional require-
ments are added. This document is expected to stabalize during the latter half of 2009.

I.III. Audience
This document is intended for application developers and application architects developing STAR Web
Services interfaces.

I.IV. Background
Web Services provide a standard means of interoperating between different software applications, run-
ning on a variety of platforms. Interoperability is achieved by using standard communication protocols
that are platform neutral such as HTTP and XML to transport messages through the Internet. SOAP, Sim-
ple Object Access Protocol, is the main specification that describes how messages should be packaged in
XML format. SOAP was submitted to the W3C in 2000 by IBM, Microsoft, UserLand, and Developmen-
tor. Other specifications work hand-in-hand with SOAP to provide complementary features such as WS-
DL (Web Service Description Language) to describe the interfaces and their bindings to communication
protocols. And, UDDI (Universal Detection Discovery and Integration) to provide a registry service for
service providers.

WS-I.org is the organization taking the responsibility of ensuring interoperability between the different
Web Services implementations. In 2006, the organization published the WS-I Basic Profile 1.1, and this
is the version that STAR is basing its web services guidelines on. The Basic Profile is based on the SOAP
1.1 specifications and describes SOAP bindings for HTTP only at this time. Bindings to other protocols
such as TCP and SMTP are starting to emerge and might be included in a future version of the specifica-
tions.

I.V. Service Provider Requirements
In order for a service provider to be able to receive and process requests and send responses back it must
satisfy the following high level requirements detailed in other guidelines documents:

• Must have a fixed URL or IP address that is publicly accessible on the Internet.

• Must have the server software and infrastructure required to parse and process incoming messages.

• Security infrastructure to protect the publicly accessible servers as defined by Dealer Infrastructure
guidelines or corporate security policy.

Communication Patterns Overview

xv

• Must have queuing facility to queue response messages if immediate delivery to the client is not possi-
ble (either disconnected client or a communication problem).

STAR defines eight security requirements:

• Business Authentication

• Party Authentication

• Privacy/Confidentiality

• Source and Target Authentication

• Source Only Authentication

• System Authentication

• Unique Party Identification

I.VI. Communication Patterns Overview
This section provides and overview of the different communication patterns described in this document.
For more detailed description, please refer to Communication Patterns chapter in the document.

Synchronous vs. Asynchronous

Synchronous communication refers to sending a message to a service provider and receiving a response
within a short timeout period (recommended timeout is 100 seconds) on the same connection. A syn-
chronous method invocation of a web service maps to one HTTP request/response cycle and it is similar
to the way web pages are requested using a browser.

Synchronous method invocations are used when a response needs to be received immediately, say, to dis-
play it to a user in an interactive transaction.

Asynchronous communication, on the other hand, refers to sending a message without waiting for a re-
sponse. A response is sent in a separate communication back to the originator. The response might be
generated after a few seconds, a few hours, or even a few days depending on the business rules.

Synchronous communication, due to its nature, adds more requirements on both the server and the client
than asynchronous communication. The server MUST process the received message and return a response
within the preset time window, or return an error message.

One-Way vs. Two-Way

In compliance with the WS-I Basic Profile 1.1, STAR currently uses HTTP as the underlying transport
protocol for Web Services. And, thus, follows the same request-based model. In a request-based model,
the client always initiates the communication and the server always sends the responses on the same TCP
connection to the IP address from which the request originated. This model works well with web services
and especially with low-end clients that do not have a fixed IP address or the infrastructure to support in-
bound requests.

Communication Patterns Overview

xvi

In a one-way, request-based communication model, only the service provider is required to have a fixed
IP address and the necessary hardware and software to listen to incoming messages. The client, on the
other hand, can be very simple and can use any type of Internet connection, even those that do not provide
a static IP address.

Due to its low requirements on the client end, the request-based model is suitable for dealer-to-OEM
communication.

To achieve a two-way communication model, the original one-way model is duplicated in reverse: the
client exposes the same set of web services and becomes a service provider too. This way, both sides are
clients and service providers at the same time and they both can initiate requests to the other side. Based
on business requirements and the agreement between the two parties, the client might chose not to imple-
ment the full set of functionality as the server to keep the implementation simple.

STAR Level One
This section describes the necessary components and pieces that all STAR Level 1 compliant implemen-
tations must implement.

 Chapter 1, STAR Web Services Overview
 Chapter 2, Common Components
 Chapter 3, Communication Patterns
 Chapter 4, Generic Web Services Specifications
 Chapter 5, BOD Specific Web Service Specifications
 Chapter 6, Error Handling
 Chapter 7, Security

3

Chapter 1. STAR Web Services
Overview

Table of Contents
1.1. Background .. 3
1.2. STAR Web Services Types ... 3
1.3. Web Service Interoperability Requirements .. 3

1.1. Background
The specifications define a set of methods and data types to facilitate exchanging synchronous and asyn-
chronous messages using one-way or two-way communication models. This section describes these types
and methods and explains how and where they apply.

This version of the specifications uses the following XML namespace to identify its types, methods and
schemas:

http://www.starstandards.org/webservices/2009/transport

1.2. STAR Web Services Types
STAR supports two styles of WSDL.

• Generic Transport - This transport can handle any type of payload. It is up to the implementer to de-
termine the type of payload being sent and received and act accordingly. One end point is used to pro-
cess all transport requests.

• BOD Specific- This transport follows in line with the more traditional web service, as it expects a spe-
cific type of payload to be sent and a specific type to be returned. Multiple end points are needed to
handle different types of BODS.

The type selected will depend on the requirements of the implementer. Some may choose to implement
one or the other, and some may choose to implement both. A generic outfacing transport and possibly an
internal BOD Specific transport to handle internal communications.

1.3. Web Service Interoperability Require-
ments
In order to ensure that the BOD Specific Web Service and the Generic Transport WSDL can exchange
STAR BODs and interoperate, the SOAP Envelope and content must adhere to the same structure. The
following items MUST match exactly:

• Element and attribute names in the Soap Envelope MUST match.

Web Service Interoperability Requirements

4

• The structure of the SOAP Message being sent MUST match.

• The STAR Manifest and STAR Payload MUST match.

• Where the items appear within the Soap Envelope MUST match.

• Occurrence constraints MUST match between the WSDLs. If something is required in one it must be
required in the other

• If a field is optional in one it MUST be optional in the other

STAR Level 1 Requirement

STAR1015: STAR BOD Specific and Generic Transports MUST be message level interopera-
ble.

As long as the message produced by the WSDL is the same between both services, the styles can commu-
nicate with each other.To help keep these aligned, STAR uses an XSLT Style Sheet to generate the sam-
ple STAR Transport 2009 and BOD Specific WSDL templates included with the STAR Schema Repos-
itory. If changes are made to the manifest or payload these will automatically appear in both the Generic
and the BOD Specific WSDLs.

The WS-I profiles define standards for interoperability that make it easier to ensure that web services and
clients can work together across varied platforms and implementations. STAR web services MUST con-
form to the WS-I Basic Profile 1.1 for interoperability and include conformance claims in the WSDL.
[ConformanceClaim]

STAR Level 1 Requirement

STAR1001: All web services must be compliant to the rules and specifications outlined by the
WS-I Basic Profile [http://www.ws-i.org/Profiles/BasicProfile-1.1.html].

STAR1002: Appropriate compliance markers are required as specified by the
WS-I Conformance Claim Attachment Mechanisms [http://www.ws-i.org/Pro-
files/ConformanceClaims-1.0-2004-11-15.html] document.

http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/ConformanceClaims-1.0-2004-11-15.html
http://www.ws-i.org/Profiles/ConformanceClaims-1.0-2004-11-15.html
http://www.ws-i.org/Profiles/ConformanceClaims-1.0-2004-11-15.html

5

Chapter 2. Common Components

Table of Contents
2.1. Overview .. 5
2.2. Message Packaging ... 5

2.2.1. Notes Regarding Payloads and Attachments ... 7
2.3. Namespaces .. 7
2.4. Web Methods ... 8

2.4.1. ProcessMessage .. 8
2.4.2. PutMessage .. 10
2.4.3. PullMessage ... 11

2.5. The payload Manifest SOAP Header .. 14

2.1. Overview
Regardless of whether a Generic Transport or a BOD Specific transport is being implemented, the over-
all message packaging will be the same. As was discussed earlier, the two transport mechanisms have to
be inter operable at the messaging level. The following sections describe the message architecture that ap-
plies to both transport methods.

2.2. Message Packaging
The STAR Web Services transport was designed to provide a platform for secure and reliable delivery
of any type of content in a standardized manner. The chosen architecture neither precludes nor requires
attachments outside the body of the SOAP message for transportation of content. The chosen packaging
methodology is well supported by all major Web Services toolkits and infrastructures and meets STAR's
transport requirements.

The STAR Payload schema defines a package structure that provides additional features such as a stan-
dard way of packaging multiple contents (STAR BODs, XML documents, binary data, etc) in one pay-
load and a message manifest that describes the contents of a message The figure below shows the struc-
ture of a valid STAR Web Services message

The first element under the SOAP:Body is the web method name. Three methods are defined: Pro-
cessMessage, PutMessage, and PullMessage. Within the method element is the payload element, the pri-
mary element that encapsulates all transported payloads. The payload element contains one or more con-
tent elements, each of which encapsulates one and only one content element, such as a STAR BOD. The
payload and content elements provide a standard format for transporting one or more XML documents in-
side the SOAP Body.

Message Packaging

6

Figure 2.1. Message Structure

Figure 2.2. Manifest

In the SOAP:Header, STAR defines a payloadManifest element, which contains one or more manifest el-
ements. Each manifest element corresponds to one content element in the SOAP Body and describes its
contents. The payloadManifest and manifest elements provide a table of contents for the message.

Notes Regarding Payloads and Attachments

7

The following a sample shows the structure of the STAR Web Services message, including the location of
the payloadManifest, and the star payload elements.

Example 2.1. Sample STAR Web Service Message

2.2.1. Notes Regarding Payloads and Attachments

The decision was made to avoid dependency on Attachments. The currently defined interface specifi-
cation neither requires nor prohibits attachments.While the overall message structure may not need to
change, additional attributes or elements may need to be added to support the evolving web services at-
tachments specifications in the future.

2.3. Namespaces
To avoid repetition and simplify the XML code snippets used in this document, the following namespace
declarations will be used throughout this document:

uiPrefix Description Namespace

wsse WS-Security http://docs.oasis-open.org/
wss/2004/01/oasis-200401-wss-
wssecurity-secext-1.0.xsd

wsu Utility Elements http://docs.oasis-open.org/
wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd

wsdl WSDL 1.1 http://schemas.xmlsoap.org/wsdl/

soapbin WSDL SOAP Binding http://schemas.xmlsoap.org/ws-
dl/soap/

httpbin WSDL HTTP Binding http://schemas.xmlsoap.org/ws-
dl/http/

mime WSDL MIME Binding http://schemas.xmlsoap.org/ws-
dl/mime/

soap SOAP 1.1 Envelope http://schemas.xmlsoap.org/soap/
envelope/

xsi Schema Instance http://www.w3.org/2001/
XMLSchema-instance

xs XML Schema http://www.w3.org/2001/
XMLSchema

ds XML Signature http://www.w3.org/2000/09/xmld-
sig

xenc XML Encryption http://www.w3.org/2001/04/xm-
lenc

starws STAR Web Services

Web Methods

8

uiPrefix Description Namespace

http://www.starstandard.org/web-
services/2009/transport

oa OAGIS http://www.openapplications.org/
oagis

oa9 OAGIS Version 9 http://www.openapplications.org/
oagis/9

starbod STAR BODs http://www.starstandards.org/
STAR

star5 STAR Version 5 BODs http://www.starstandard.org/
STAR/5

tns This Name Space Various

wsp WS-Policy http://www.w3.org/ns/ws-policy

wsa WS-Addressing http://www.w3.org/2005/08/ad-
dressing

wsrm WS-ReliableMessaging http://docs.oasis-open.org/ws-rx/
wsrm/200608

wsam WS-Addressing Metadata http://www.w3.org/2007/05/ad-
dressing/metadata

2.4. Web Methods
Three methods are defined to cover the different types of communications supported by the guidelines.
ProcessMessage, PutMessage, and PullMessage. The following sections describe these methods in more
detail.

2.4.1. ProcessMessage

This is the method to use for synchronous communication. It takes a payload element as an input, pro-
cesses it, and returns a result payload all within one HTTP cycle. After invoking this method, the client
keeps the connection open waiting for the response. If a response is not received within a predetermined
timeout period, the method is considered to have failed.

In certain situations this method might return a SOAP fault element instead of a payload element. For ex-
ample, if the sender could not be authenticated or the message is not well formed. Fault Codes are de-
scribed in Chapter 6, Error Handling for more information. Errors related to business rules, on the other
hand, MUST NOT be returned as SOAP faults, but returned using the suitable BOD.

STAR Level 1 Requirement

STAR1016: Application level error messages MUST NOT be returned with a SOAP Fault,
and MUST be returned using the appropriate BOD.

ProcessMessage

9

Example 2.2. SOAP Body Message

Request:

<soapenv:Body>
 <starws:ProcessMessage>
 <!--Optional:-->
 <starws:payload>
 <!--Zero or more repetitions:-->
 <starws:content id="?">
 < !--You may enter ANY elements at this point-->
 </starws:content>
 </starws:payload>
 </starws:ProcessMessage>
</soapenv:Body>

Response:

<soapenv:Body>
 <starws:ProcessMessageResponse>
 <!--Optional:-->
 <starws:payload>
 <!--Zero or more repetitions:-->
 <starws:content id="?">
 <!--You may enter ANY elements at this point-->
 </starws:content>
 </starws:payload>
 </starws:ProcessMessageResponse>
</soapenv:Body>

The following sequence diagrams show the message exchange sequences for different scenarios.

Figure 2.3. Process Message

PutMessage

10

Figure 2.4. ProcessMessage with Errors

Figure 2.5. ProcessMessage with Application System Errors

The sequence diagrams that describe the error process are the same whether the PutMessage or PullMes-
sage operation is being implemented instead of the ProcessMessage operation. The processes work the
same whether a generic transport or a BOD specific transport is being implemented.

2.4.2. PutMessage

The PutMessage web method is used for asynchronous communication. It accepts a payload element as
an input parameter, and returns nothing. Typically, PutMessage is used for messages that do not generate
a response or for situations where a response is not returned immediately. The response can be retrieved
later by calling PullMessage. The input payload for PutMessage must contain one or more elements.

Although PutMessage does not return any value to the caller, it can return SOAP faults to indicate that
the 'put' process was not successful. This typically happens in situations where the message could not be
parsed or persisted on the server side. For example, if the SOAP envelope is corrupted and the server can
not extract the payload or the sender information then a SOAP fault must be returned on the same con-
nection to inform the sender of the error. Note that business level errors such as invalid values in a BOD
should not be returned as SOAP faults, but instead are returned asynchronously (not on the same HTTP
connection) in a response BOD that describe the error details. SOAP faults are reserved for errors that
prevent the correct parsing or persistence of the message on the server.

PullMessage

11

Example 2.3. SOAP Message

Request:

<soapenv:Body>
 <starws:PutMessage>
 <!--Optional:-->
 <starws:payload>
 <!--Zero or more repetitions:-->
 <starws:content id="?">
 <!--You may enter ANY elements at this point-->
 </starws:content>
 </starws:payload>
 </starws:PutMessage>
</soapenv:Body>

Response:

<soapenv:Body>
 <starws:PutMessageResponse/>
</soapenv:Body>

In a one-way communication pattern, the client uses PutMessage to send a request to a service provider
then sends another request using PullMessage (described in the next section) to pull the response. On the
other hand, in a two-way communication pattern, the request is sent using PutMessage, and the response
is returned using another PutMessage in the reverse direction.

Figure 2.6. Successful PutMessage Sequence

2.4.3. PullMessage
PullMessage is used to retrieve contents from the service provider. The contents can be:

Responses to previous contents (a BOD for example) submitted using PutMessage.

Responses to previous contents submitted using ProcessMessage but could not be delivered back to the
requester due to communication or other errors.

Contents that originate from the service provider.

If the client is also a service provider, as in the two-way communication model, PullMessage is not re-
quired since both parties can communicate back and forth using PutMessage. However, the parties might
choose to still use PullMessage in certain situations.

PullMessage

12

The service provider must keep track of contents that are deemed to have been received by the client to
avoid resending. The client may receive duplicates during error recovery.

STAR Level 1 Requirement

STAR1017: The service provider must keep track of contents that are deemed to have been re-
ceived by the client to avoid resending.

STAR1020: The client must be able to handle duplicate messages from a service provider.

Figure 2.7. PullMessage Structure

Filter Criteria:

Beginning in 2008 the PullMessage service was extended to support filtering with the addition of the fil-
ter complex type and the maxItems attribute. The filter type allows the requesting party to specify crite-
ria that the responding party must apply when selecting the BODs to be returned in the pull message re-
sponse. The maxItems attribute can be used to limit the number of BODs that will be returned, regardless
of whether or not they satisfy the filter criteria.

For example, the filter criteria and maxItems parameters could be used to to satisfy the following request:

"Retrieve all AcknowledgePartsOrder BODs queued for sending in the last 24 hours.Send a maximum of
20 BODs"

A detailed description of the filter component can be found in section 4.5.

Returns:

This operation returns a payload object that carries one or more elements. Or, it returns an empty response
with no payload element if there are no queued contents to return.

PullMessage

13

Example 2.4. SOAP Message with Filter

Request:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:tran="http://www.starstandard.org/webservices/2009/transport">
 <soapenv:Header/>
 <soapenv:Body>
 <tran:PullMessage maxItems="?">
 <!--Optional:-->
 <tran:filter>
 <!--Optional:-->
 <tran:filterConnection connectionID="?" destroy="?"/>
 <!--Optional:-->
 <tran:receiptIDs>
 <!--1 or more repetitions:-->
 <tran:receiptID>?</tran:receiptID>
 </tran:receiptIDs>
 <!--Optional:-->
 <tran:filterCriteria>
 <!--1 or more repetitions:-->
 <tran:criteriaList>
 <!--1 or more repetitions:-->
 <tran:criteria>
 <!--Optional:-->
 <tran:verb tran:operation="?">?</tran:verb>
 <!--Optional:-->
 <tran:noun tran:operation="?"></tran:noun>
 <!--Optional:-->
 <tran:applicationID tran:operation="?">?</tran:applicationID>
 <!--Optional:-->
 <tran:partyID tran:operation="?">?</tran:partyID>
 <!--Optional:-->
 <tran:startDateTime tran:operation="?">?</tran:startDateTime>
 <!--Optional:-->
 <tran:endDateTime tran:operation="?">?</tran:endDateTime>
 <!--Optional:-->
 <tran:pullStatus tran:operation="?">?</tran:pullStatus>
 <!--Optional:-->
 <tran:communicatorID tran:operation="?">?</tran:communicatorID>
 <!--Zero or more repetitions:-->
 <tran:predefined tran:operation="?">?</tran:predefined>
 </tran:criteria>
 </tran:criteriaList>
 </tran:filterCriteria>
 </tran:filter>
 </tran:PullMessage>
 </soapenv:Body>
</soapenv:Envelope>

Response:

<soapenv:Body>
 <starws:PullMessageResponse>
 <!--Optional:-->
 <starws:payload>
 <!--Zero or more repetitions:-->
 <starws:content id="?">
 <!--You may enter ANY elements at this point-->
 </starws:content>
 </starws:payload>
 </starws:PullMessageResponse>
</soapenv:Body>

The payload Manifest SOAP Header

14

Figure 2.8. Successful PullMessage Operation

2.5. The payload Manifest SOAP Header
STAR defines a custom SOAP header to serve as a table of contents for the message. The payload mani-
fest contains one manifest element for each content element in the SOAP body. The manifest provides an
easy and fast way to identify the types of data in the message payload without parsing the whole message.
This is useful for implementations that make routing decisions based on the contents of the message. And,
it is especially useful if the body of the message is encrypted.

Figure 2.9. Payload Manifest

The manifest has the following attributes:

• namespaceURI: (Required) -This attribute contains the namespace URI of the XML element in the cor-
responding content in the SOAP body.

• element: (Required) - This attribute contains the local name of the XML element in the corresponding
content in the SOAP body.

• contentID: (Required)This attribute should be populated with the ID of the corresponding content ele-
ment. This attribute, along with the id attribute of the content element is used to match the manifest to
its corresponding content element.

The payload Manifest SOAP Header

15

• version (Optional) - When the payload content is a BOD, this attribute contains the version number of
the noun's schema used to validate the BOD, for example, 3.01. DTS files use the interfaceVersion of
the file. For BOD content and DTS attachments this attribute is required.

STAR Level 1 Requirement

STAR1018: A SOAP Header MUST contain one manifest element for each content element
in the SOAP body.

STAR1019: A manifest is REQUIRED to have namespaceURI, element, contentID, and
version attributes. Even though version is listed as optional it is REQUIRED for STAR
BOD and DTS transports.

16

17

Chapter 3. Communication Patterns

Table of Contents
3.1. One-Way Communication .. 17

3.1.1. One-Way Synchronous Communication ... 17
3.1.2. One-Way Asynchronous Communication ... 17

3.2. Two-Way Communication ... 18
3.2.1. Two-Way Synchronous Communication .. 18
3.2.2. Two-Way Asynchronous Communication .. 18

3.1. One-Way Communication
In the context of this document, one-way communication refers to the communication pattern in which
only one of the communicating parties, the service provider (a.k.a. the server), has an addressable end-
point and the ability to receive and process incoming Web Services messages; and the other parties, the
service consumer (a.k.a. the client), can send Web Services requests and receive their response in one
HTTP cycle, but does not have an addressable endpoint to receive incoming messages initiated by another
party. In this communication pattern, messages always originate from the client to the server.

3.1.1. One-Way Synchronous Communication

The client uses ProcessMessage to achieve synchronous communication and receive a response immedi-
ately as shown in ProcessMessage sequence diagram earlier. Upon receiving the request, the server starts
processing it while holding the connection with the client open until a response (or an error) is ready to be
returned to the client on the open connection.

3.1.2. One-Way Asynchronous Communication

The client can also use PutMessage and PullMessage together to achieve asynchronous communication as
shown in the figure below. In this pattern, the client must send a PullMessage request to receive contents
queued at the server side. The client can either implement a polling service to periodically request con-
tents from the server or send the requests only when contents are expected to be available for download,
for example, through an event notification model, the details of which is out of the scope of this docu-
ment.

Two-Way Communication

18

Figure 3.1. One-way Asynchronous Communication

3.2. Two-Way Communication
Two-way communication in the context of this document refers to the pattern in which both communicat-
ing partners have the ability to initiate and receive messages at the same time. This type of communica-
tion is possible if both parties satisfy the service provider requirements described in Service Provider Re-
quirements section.

3.2.1. Two-Way Synchronous Communication

Synchronous communication is done the same way using ProcessMessage as it is done in the one-way
pattern (seeFigure 3.1, “One-way Asynchronous Communication”). The difference here is that both par-
ties can initiate the requests and hold for a response. Business requirements and an agreement between the
two communicating parties determine weather and when synchronous communication is appropriate ver-
sus asynchronous communication.

3.2.2. Two-Way Asynchronous Communication

Asynchronous communication changes a little bit from the way it is done in the one-way communication
pattern. In the one-way approach, the client sends a request using PutMessage, and then sends another re-
quest using PullMessage to download the response from the server. In the two-way approach, the need
for PullMessage diminishes and is replaced instead by PutMessage initiated by the server to the client as
shown in the figure below.

Two-Way Asynchronous Communication

19

Figure 3.2. Two-way Asynchronous Communication

20

21

Chapter 4. Generic Web Services
Specifications

Table of Contents
4.1. Overview .. 21
4.2. Generic WSDL ... 21
4.3. Benefits and Considerations ... 21
4.4. Pull Web Service Filter Criteria ... 22

4.4.1. Filter Elements ... 22
4.5. Generic WSDL Example ... 25

4.1. Overview
The specifications define a set of methods and data types to facilitate exchanging synchronous and asyn-
chronous messages using one-way or two-way communication models. This section describes these types
and methods and explains how and where they apply.

4.2. Generic WSDL
The generic transport is considered to be a loosely typed WSDL, meaning that it does not fully describe
all types of payloads that can occur. It provides meta data about the payload that shows up in the SOAP
BODY based on information contained in the SOAP Header manifest, and the content element in the
SOAP BODY. The generic transport does exactly what its name implies, allowing the sending and re-
ceiving of any type of payload in the soap body. You could technically send a BOD, UBL Message, DTS
Transaction, Text, Binary Encoded, etc.

4.3. Benefits and Considerations
Benefits:

• Allows for loosely typed, and loosely coupled systems. Transport and Application are separate

• Changes to the data sent in the payload do not necessarily change the WSDL. Meaning the web service
does not change because the schema changed.

Considerations:

• All transport traffic is going through one end point. This could potentially have scalability issues de-
pending on the amount of data that is coming into the system.

• Implementers will need to implement routing and extraction code in order to determine what to do with
the payload received.

• Need to implement logic in order to handle contents that are not understood.

Pull Web Service Filter Criteria

22

• Need to negotiate out of band using other services to describe what payloads are understood and han-
dled by a particular trading partner.

4.4. Pull Web Service Filter Criteria
As discussed in Chapter 2, Common Components, the Pull web service was enhanced for 2008 with a
Filter component. This component allows the service requestor to provide optional criteria that the ser-
vice provider will use to restrict the number and types of BODs that will be returned in the response mes-
sage. Additionally, filters can be defined as persistent, allowing them to be re-used across multiple Pull
requests.

Figure 4.1. PullMessage Filter Type

Each service requestor and service provider must implement the code that provides support for the filter
component. STAR will provide the specifications for the filter component, however each implementor
will be free to choose the method in which they implement the functionality.

4.4.1. Filter Elements
The Filter component consists of the following three elements:

Element Occurrence Description

filterConnection Complex Type Used to define persistence for the
filter

receiptIDs Complex Type Used by service requestor to con-
firm the receipt of each message
requested

filterCriteria Complex Type List of filter criteria to apply to the
pull request

The complete list of elements within the filter criteria component are shown below.

Item Type Description

PullMessage Complex Type

maxItems Attribute The maximum number of items
to be sent. The service may send
less than the number requested
but should never send more than

Filter Elements

23

the number requested in any one
pulling session.

filter Complex Type

filterConnection Element

connectionID Attribute A unique connection id for the fil-
ter. Used during persistance of a
filter.

destroy Attribute The destroy attribute of FilterCon-
nection will be set to true when the
client decides to destroy a persist-
ed filter before all of its applicable
messages have been pulled. If and
when the client does pull all of the
persisted filter's applicable mes-
sages, then the web service will
automatically destroy the connec-
tion and return an empty pull re-
sponse. If the client does not pull
all of a persisted filter's applicable
messages and does not explicitly
destroy the persisted filter by set-
ting the destroy attribute to true,
then based on an agreed upon out-
of-band policy, the web service
will expire the persisted filter after
X number of days.

recieptIDs Complex Type

receiptID Element An unbounded list of content ids
that have been previously received
since the last pull request.

filterCriteria Complex Type A list of filter criterias to be ap-
plied to pulling.

criteriaList Complex Type Criteria contains a unbounded list
of filter criteria that can be ap-
plied to a queue. If included it is
used to specify what should be re-
trieved. More than one criteria can
be specified. Each criteria is it's
own filter.

verb Element The OAGIS or STAR Verb. i.e.
Process, Acknowledge, Notify, etc

operation Attribute Enumerated List: "and", "or",
"not"

noun Element The OAGIS or STAR Noun for a
particular BOD. i.e. PartsOrder,

Filter Elements

24

CreditApplication, FinancialState-
ment, etc.

operation Attribute Enumerated List: "and", "or",
"not"

serviceID Element identifies the particular service to
or from which a message is being
sent (e.g. Parts:Orders)

operation Attribute Enumerated List: "and", "or",
"not"

partyID Element Assigning Organization Party Id

operation Attribute Enumerated List: "and", "or",
"not"

startDateTime Element Indicates the beginning time/date
range of messages to be retrieved
during this pull session. Based on
the time/date at which each mes-
sage was originally queued for de-
livery.

operation Attribute Enumerated List: "and", "or",
"not"

endDateTime Element Indicates the ending time/date
range of messages to be retrieved
during this pull session. Based on
the time/date at which each mes-
sage was originally queued for de-
livery.

operation Attribute Enumerated List: "and", "or",
"not"

pullStatus Element The status of an item to be pulled.
(i.e. Pulled, Ready, etc.)

operation Attribute Enumerated List: "and", "or",
"not"

communicatorID Element Identifer of the party on behalf of
which the pull call was submitted.
This could be the ID of the calling
party or it may be an alternate par-
ty if the pull request is being prox-
ied by another service.

operation Attribute Enumerated List: "and", "or",
"not"

predefined Element These are complex queries or
queries that can't be represented
using the current filter criteria.

Generic WSDL Example

25

They may contain if then else log-
ic, and are identified by a name.
(i.e. GetWidgetsGreaterThan10)

operation Attribute Enumerated List: "and", "or",
"not"

4.5. Generic WSDL Example
How is the generic transport implemented by STAR? As has been outlined in Chapter 2, Common Com-
ponents, the generic transport will implement the Manifest, and Content elements in the Soap Header and
Body respectively.

Figure 4.2. Generic Transport

As is depicted in the figure below, the WSDL implements the ProcessMessage, PutMessage, and
PullMessage methods and operations. The following examples will use the ProcessMessage method to in-
dicate the structure of the SOAP Body. A sample Generic Transport WSDL can be found with the STAR
Schema Repository.

Figure 4.3. Generic Payload Element Definition

The generic transport will use one common payload element definition.This is the Payload type. The pay-
Load type contains the definition for the content elements.

Generic WSDL Example

26

Figure 4.4. Generic Element

The Generic content element refers to a complex Type definition that defines an xsd:any as the content
for the element. What this says, is that any type of XML or Text can be put here. It is not locked to a par-
ticular type of data to be sent or received. Information about the content is located in the Manifest ele-
ments and linked by an id. There may be unlimited number of content elements sent in the payload, and
each links back to a particular manifest element.

The receiving web service would process the Manifest to determine what it actually received, and do any
appropriate routing or processing of the payload contained within it.

Example 4.1. Sample Generic Message

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:starws="http://www.starstandard.org/webservices/2009/transport">
 <soapenv:Header>
 <starws:payloadManifest>
 <!--Zero or more repetitions:-->
 <starws:manifest contentID="?" namespaceURI="?" element="?" relatedID="?"
 version="?"/>
 </starws:payloadManifest>
 </soapenv:Header>
 <soapenv:Body>
 <starws:ProcessMessage>
 <starws:payload>
 <!--Zero or more repetitions:-->
 <starws:content id="?">
 <!--You may enter ANY elements at this point-->
 </starws:content>
 </starws:payload>
 </starws:ProcessMessage>
 </soapenv:Body>
</soapenv:Envelope>

27

Chapter 5. BOD Specific Web Service
Specifications

Table of Contents
5.1. Overview .. 27
5.2. BOD Specific WSDLS .. 27
5.3. Benefits and Considerations ... 27
5.4. BOD Specific WSDL Example .. 28

5.1. Overview
Choosing either a BOD Specific transport or a Generic transport does have architectural implications.
However, the choice does not have to be one or the other, both can be used together. The choice should be
based on what best fits the overall architectural and system needs for the Web Services to be implement-
ed.

5.2. BOD Specific WSDLS
What is a BOD Specific WSDL? A BOD Specific WSDL is a version of the STAR Web Services Trans-
port specification that expects to send and receive only a specific type of BOD in its transaction life cy-
cle. If it receives anything other than what it expects, it will send back a SOAP Fault to indicate that the
wrong payload was sent. According to Russell Butek from IBM, "WSDL is the Web Services Descrip-
tion Language. Its charter is to describe an interface to a service as completely as possible. When you
use xsd:any, you deviate from this intent of the WSDL". [Butek2005] In other words, a Generic transport
does not fully describe a web service; it leaves key information about the payload out. This has the advan-
tage of allowing the transport to remain generic but shifts the determination of the content and what to do
with the content received to another portion of the system.

A BOD Specific WSDL will fully describe all aspects of the Web Service's capabilities, including the
type of payload that can be received and the expected responses. BOD specific WSDL is considered to
be a strongly typed WSDL. More information in regards to strongly typed and loosely typed WSDL def-
initions can be found in the IBM Developerworks article, "Loosely typed versus strongly typed Web Ser-
vices" by Andre Tost.

5.3. Benefits and Considerations
Benefits:

• BOD specific WSDL fully describes the Web Services Interface and the type of services it offers. The
WSDL is considered to be strongly typed.

• BOD specific WSDL specifies clearly what is to be sent to the service and what is to be returned.

BOD Specific WSDL Example

28

• BOD specific WSDL's are more compatible with existing development tools that generate code from
the WSDL. These tools work best when they can describe the full capabilities, and not have to leave
pieces to be filled in outside of their framework.

• Services using BOD Specific WSDL's do not require additional processing by the SOAP engine to fig-
ure out the type of payload being received.

• Data Validation of the payload can happen before it reaches the application, as it is validated by the
type of content the Web Service expects to receive.

Considerations:

• Changes can create backward compatibility issues. If the strongly typed data in the WSDL changes or
breaks compatibility, code that depends on the WSDL may need to be regenerated.

• Strongly typed interfaces require more logic upfront in the Transport dealing with the payload and
parsing of the information. The amount depends on the size and complexity of the payload.

• There is a closer tie between the transport and application, potentially requiring closer testing between
the two.

5.4. BOD Specific WSDL Example
So how does a BOD Specific WSDL look when implementing the STAR Web Services Transport? STAR
includes with the XML Schemas for STAR 5 the BOD Specific WSDL for all the BODs. These are
grouped by the recommended Verb and Noun pairing outlined in the Verb Usage Guidelines available on
the STAR Website. The WSDL files may be found in the following directory:

Figure 5.1. WSDL Directory Structure

There are roughly about 60 WSDL definition files, and these are automatically generated with the base in-
formation necessary for minimum compliance with the STAR Web Services transport. These WSDL files

BOD Specific WSDL Example

29

do not implement any of the Security, or Reliable Messaging that may be needed by a particular imple-
mentation. They are provided as templates for users to update for their particular requirements.

Figure 5.2. BOD Specific Service and Operations

On the surface, there is little difference between the structure of the BOD Specific WSDL and a generic
transport. You still have operations, transport types, bindings, messages, and services. The root soap body
elements that carry the payload are still the same, and the manifest information that is transmitted is the
same as well. These all have to be the same for both a generic and BOD specific WSDL to be able to in-
teroperate with each other.

Differences start to show once you reach the definition of the elements that make up the operation as
shown in the figure belowFigure 19.

Figure 5.3. BOD Specific Process Message Definition

A BOD specific WSDL will refer to a very strongly typed definition for the payload element. This allows
the WSDL to fully describe the type of content expected to be sent with the type of operation that is being
invoked. Further, the payload element itself describes the type of BOD to be carried and the multiplicity
of the content.It also describes where attachment data should occur and in what order the payload infor-
mation should be sent.

Figure 5.4. BOD specific strongly typed payload

If schema validation is performed and the information does not appear in the order that is specified, a
SOAP fault must be returned before the information ever reaches the receiving application.

30

31

Chapter 6. Error Handling

Table of Contents
6.1. HTTP Errors, SOAP Faults, and BOD Level Errors .. 31

6.1.1. General Principles .. 31
6.1.2. Spectrum of Error Types .. 31
6.1.3. HTTP Errors .. 32

6.2. SOAP Faults ... 33
6.2.1. Sample Error Cases .. 35

6.3. Application Level Errors ... 37

6.1. HTTP Errors, SOAP Faults, and BOD
Level Errors
It is important to use HTTP errors, SOAP Faults, or BOD level errors consistently. However, this sec-
tion acknowledges implementations may use different error mechanisms for the same types of errors.
 This section defines general guidelines between these error mechanisms and also refers to the appropriate
STAR documentation with regard to BOD level error handling.

6.1.1. General Principles

• Across STAR transports, the mechanism of error reporting should be as consistent as possible.

• To align with the above principle, communicate as many errors as possible within BODs and minimize
the amount of errors communicated in a transport specific way (such as SOAP Faults).

• Other principles specific to BOD level errors are detailed in the STAR Confirm BOD Implementation
Guidelines.

• Implementations MUST NOT communicate errors using mechanisms other than those defined by
STAR documents, or use error codes not defined or approved by STAR.

6.1.2. Spectrum of Error Types

The types of errors which can occur when a Web service client attempts to communicate with a Web ser-
vice can be thought of as a spectrum. At one end of the spectrum are the pure transport related errors and
at the other end are the errors resulting from the business processing of the BOD. The mechanisms used
to communicate these errors differ. 4.2.2-1 depicts an example specific to the use of Web services over
HTTP. Other transport level protocols may have other exceptions. Although many types of errors are
shown, this list is not intended to be all-inclusive.

HTTP Errors

32

Figure 6.1. Spectrum of Error Types by Communication Mechanism

The general guidelines with the approach shown here are the following:

HTTP exceptions are truly transport specific. SOAP Faults include the following types of errors:

• True Web service transport specific errors (e.g., Invalid operation and server too busy)

• SOAP Faults defined as part of a Web service standard like WS-Security implemented by this docu-
ment (e.g., FailedAuthentication)

• SOAP Faults due to manifest and payload inconsistencies

• SOAP Faults due to business level errors that could not be returned in a BOD.

BOD level errors are preferred over the previous transport specific errors; therefore, if the application area
of the BOD is obtainable and the error is not a transport error, BOD level error handling SHOULD be
used. Refer to the STAR Confirm BOD Implementation Guidelines for details on BOD level errors.

6.1.3. HTTP Errors
HTTP Errors are those that occur at the transport layer when trying to call the web service and the web
service client should handle them according to WSI basic profile 1.1.

Web service client should check for the HTTP return code 200 to ensure the transaction that was attempt-
ed went through ok. If the client receives any HTTP return code other than 200, it should be handled ac-
cordingly. Typical situations an HTTP error could occur are as follows:

Common STAR HTTP Error Codes:

Description Error Code

When the web server where the web service is be-
ing hosted is down or not available.

404

When the DNS server is unable to resolve the do-
main name in the Endpoint.

400 or 500

When the Endpoint of the web service is not avail-
able.

503

SOAP Faults

33

When the SSL Handshake Failure occurs between
the Client and the Web Server.

500

When the Web Service does not recognize the re-
quest sent by the client.

502

When the HTTP Request time out occurs. (NOTE:
This is not the same as the timeout error we see in
the SoapFault.)

408

For a more details on all type HTTP error codes and details of each error code and description please refer
to RFC2616 Section 10. [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html] [RFC2616.10]

6.2. SOAP Faults
SOAP faults are used to indicate error situations that prevent the successful delivery of STAR contents
for subsequent parsing and processing. While this specification does not prevent using SOAP faults to
communicate business level errors generated by business rules, this specification RECOMMENDS that
these types of errors be returned using the proper BOD type such as a ConfirmBOD or the corresponding
Acknowledge BOD.

If you send a message that was not successful you may get back a response containing a SOAP fault el-
ement which gives you status information, error information, or both. A SOAP Fault is similar to an Ex-
ception object in common development platforms in that it conveys information about a problem that pre-
vents further processing. Some STAR-specific SOAP fault codes have been defined for common faults.
All STAR implementations must understand these faults and handle them accordingly. Standard SOAP
faults should be preferred over custom fault codes, such as when WS-Security or the WS-I Basic Profile
define specific faults to be used. Below is a list of common faults that have been defined by STAR. When
used, the fault code must be prefixed by “STAR:” and appear as in STAR:Invalid Structure.

Note: When sending a SOAP Fault the HTTP Status code needs to be set to 500, according to the WS-I
Basic Profile.

Table 6.1. STAR Standard Soap Faults

Fault Code Description

Duplicate Document This code refers to a document that already exists.
This may happen for a BOD such as ProcessPart-
sOrder where the document identifiers to another
existing parts order from the same dealer.

Not Authorized This code occurs when the client attempts to per-
form an operation that is not authorized for the giv-
en action. This is not to be used for Authentication
errors. Those should use the appropriate WS-Secu-
rity SOAP Fault.

Server Error An error (e.g. database server is down) on the serv-
er prevented the execution of the BOD. The client
will have to resend the BOD at a later time.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

SOAP Faults

34

Fault Code Description

BOD Not Supported The received BOD or BOD version is not supported
b the receiver.

Invalid Structure The structure of the BOD is not valid. For example,
the BOD failed schema validation.

Invalid BODID A BODID was missing or is Invalid.

Time Exceeded The processing time will exceed the real time trans-
action allowed time. Must resend with a Put for
batch processing, and pull to receive the message.

A SOAP Fault object contains the following elements:

• Fault code: Always required. The fault code must be a fully qualified name: it must contain a prefix
followed by a local name. The SOAP specifications define a set of fault code local name values, which
a developer can extend to cover other problems.

• Fault string: Always required. A human-readable explanation of the fault.

• Fault actor: Required if the SOAP Header object contains one or more actor attributes; optional if no
actors are specified, meaning that the only actor is the ultimate destination. The fault actor, which is
specified as a URI, identifies who caused the fault. For an explanation of what an actor is, see the actor
attribute.

• Detail object: Optional element. The SOAP Fault object may contain a Detail object that gives details
about the problem.

Below is an example of a SOAP message carrying a valid Fault element:

Example 6.1. Sample SOAP Fault

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Header>
 </soap:Header>
 <soap:Body>
 <soap:Fault>
 <faultcode>soap:Server</faultcode>
 <faultstring>Database server not available.</faultstring>
 <faultactor>http://localhost/WebServices/STAR/STARTransport.asmx</faultactor>
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

SOAP 1.1 defines the following standard fault codes under the SOAP namespace ("http://
schemas.xmlsoap.org/soap/envelope/"):

• Client: This code should be used when an error is found in the received message. The error could be
anything from a corrupted message to a missing required element. This fault code indicates that the re-
ceived message is the cause of the error and that the client is to blame.

• Server: This fault code indicates that a problem at the server prevented the processing of the message.
The error could be anything from an overloaded server to a failing database.

Sample Error Cases

35

These fault codes represent classes of errors rather than specific errors. SOAP 1.1 allows extending the
fault codes using the period notation, however this practice is discouraged by the WS-I Basic Profile 1.1
to avoid the risk of potential name conflicts.

STAR Level 1 Requirement

STAR1009: All STAR Web Services are REQUIRED to understand and handle the STAR
Specific SOAP Faults.

STAR1010: All STAR soap fault error codes are REQUIRED to be be prefixed with STAR:
and the appropriate STAR error code. i.e. STAR:Invalid Structure.

STAR1011: All STAR soap fault error codes are REQUIRED to appear in the standard
SOAP:Fault block.

STAR1012: SOAP Faults are for Critical Processing errors only. Informational or warning er-
rors SHOULD NOT be sent as a SOAP Fault.

Note that some specifications mentioned in this document define their own SOAP faults. For example,
WS-Security defines a set of fault codes to address security related errors. These fault codes are described
in the WS-Security section and should be used when appropriate.

STAR Level 1 Requirement

STAR1014: WS-Security errors must send the appropriate WS-Security SOAP Fault for the
authorization being used.

6.2.1. Sample Error Cases
Below are examples of different error situations and valid responses that a service provider can reply
with.

Error Case Valid Response (ConfirmBOD or SOAP Fault)

Wrong ProcessMessage namespace Fault: soap:Client

Wrong BOD namespace Fault: soap:Client

Misspelled BOD root element ConfirmBOD: BodNotSupported

Fault: soap:Client

Invalid or missing <Task> element Fault: soap:Client

Fault: wsse:FailedAuthentication

ConfirmBOD: BodNotSupported

ConfirmBOD: FieldMissing

Sample Error Cases

36

ConfirmBOD: InvalidBod

Missing <ReferenceId> Fault: soap:Client

ConfirmBOD: FieldMissing

Missing <DealerNumber> Fault: soap:Client

Fault: wsse:FailedAuthentication

ConfirmBOD: FieldMissing

Invalid dealer number Fault: wsse:FailedAuthentication

ConfirmBOD: InvalidValue

Missing <BODId> Fault: soap:Client

ConfirmBOD: FieldMissing

Message too old

(wsse:Security\wsu:Timestamp\wsu:Expires has
expired)

wsu:MessageExpired

Missing Application Area Fault: soap:Client

Fault: wsse:FailedAuthentication

ConfirmBOD: InvalidBod

Missing Data Area Fault: soap:Client

ConfirmBOD: InvalidBod

Invalid User ID

in wsse:Security header

wsse:FailedAuthentication

Wrong password

in wsse:Security header

wsse:FailedAuthentication

Corrupted XML HTTP/1.1 400 Bad Request

(specified by WS-I Basic Profile)

Wrong SOAP Action HTTP header soap:Client

Wrong SOAP Action in HTTP header and
wsa:Action

soap:Client

Application Level Errors

37

Misspelled wsse:Security namespace wsse:SecurityTokenUnavailable

6.3. Application Level Errors
Application level errors are those that occur once the payload has made it into the application for process-
ing. The BOD that returns these errors could either be a Acknowledgement or a Confirm depending on
the verb that was used to send the BOD. If a Process verb is used, then an Acknowledgement Verb is the
appropriate response. Confirm BOD could technically be used in almost any situation, but it is an OAGi
recommendation that application level errors be handled where possible by the corresponding response
Verb.

The following messages may occur at a ConfirmBOD or SOAP Fault level. This depends on how the im-
plementation is architect-ed on the back end system. While the ConfirmBOD can send back Warnings,
SOAP Faults are restricted to errors that stop processing of the message. Warnings are not included in the
list for this reason. There are also some concerns about warnings on how these should be handled from an
interoperability standpoint.

All of the codes listed in the following table are to be treated as ERRORS.

STAR Level 1 Requirement

STAR1013: ConfirmBOD reason codes that are sent at the Warning or Informational status,
should not trigger a resending of the BOD.

Description Code

A doucment already exists. This may happen for a
BOD such as ProcessPartsOrder where the docu-
ment identifiers to another existing parts order from
the same dealer.

Duplicate Document

One or more required data elements have invalid
values.

Invalid Required Value

The operation that cannot be performed, such as
Change or Cancel based on the receiver's business
rules and the condition of the document. For exam-
ple, the part order has already been shipped there-
fore the order cannot be cancelled.

Cannot Perform

One or more required fields are missing. Required Field Missing

An error (e.g. database server is down) on the serv-
er prevented the execution of the BOD. The client
will have to resend the BOD at a later time.

Server Error

The client attempts to perform an operation that is
not permitted. An example of when this may occur
is if the dealer attempts to order a part when their
account is placed on hold. This is to be used for au-
thorization errors

Not Permitted

BOD Not Supported

Application Level Errors

38

The received BOD or BOD version is not supported
by the receiver.

The structure of the BOD is not valid. For example,
the BOD failed schema validation.

Invalid Structure

39

Chapter 7. Security

Table of Contents
7.1. Overview .. 39
7.2. WS-I Basic Security Profile ... 39
7.3. WS-Security SOAP Header ... 40
7.4. Authentication ... 40

7.4.1. Username and Password ... 40
7.4.2. The Username element ... 41
7.4.3. Plain Text Password ... 41
7.4.4. Password Digest ... 42

7.5. Security Error Handling ... 43

7.1. Overview
The following sections define the implementation details to meet the Star Transport Guidelines security
requirements when using Web Services.

The following specifications are used to accomplish secure web services communication until further
clarifications and standards emerge from the Web Services Security technical committee in Oasis:

1. HTTPS: Provides a secure transport channel

2. Web Services Security: SOAP Messaging Security V1.0: Provides the framework for SOAP messag-
ing security.

3. Web Services Security: Username Token Profile V1.0: Describes user authentication tokens.

The security methods described in this section can be applied to all the web services methods mentioned
earlier on both requests and responses. Communication partners will need to agree on which security
methods to use and on which types of communication. The choice will also be affected by business rules,
performance and information sensitivity. As a base standard all STAR endpoints and clients MUST send
information encrypted using HTTPS and comply with the security requirements outlined by the WS-I Ba-
sic Security Profile 1.0.

STAR Level 1 Requirement

STAR1004 : All implementations are REQUIRED to send information over HTTPS.

7.2. WS-I Basic Security Profile
WS-I Basic Security Profile 1.0 consists of a set of non-proprietary web services specifications, along
with clarifications to and amplifications of those specifications which promote interoperability.

WS-Security SOAP Header

40

STAR Level 1 Requirement

STAR1008 : All services and clients must be compliant to the general Security requirements
Outlined by the WS-I Basic Security Profile 1.0 .The optional attributes defined in the Profile
is also to be relaxed in the STAR Implementation.

STAR Level 1 implementations when using Username/Password for authentication MUST implement the
rules specified by the WS-I Basic Security Profile.

7.3. WS-Security SOAP Header
WS-Security defines the Security SOAP header to carry security information in SOAP messages. Infor-
mation included in this element includes, but not limited to, authentication credentials, digital signatures,
and encryption references. To specify security information for intermediary processing, use the actor ele-
ment on the Security SOAP header. WS-Security specifies the wsu:Timestamp element as a child of the
wsse:Security header.

Example 7.1. Sample of WS-Security

<soap:Header>
 ...
 <wsse:Security>
 <wsu:Timestamp>
 <wsu:Created>2003-06-04T03:48:32Z</wsu:Created>
 <wsu:Expires>2003-06-04T03:53:32Z</wsu:Expires>
 </wsu:Timestamp>
 ...
 </wsse:Security>
 ...
</soap:Header>

7.4. Authentication
The STAR Transport Group has selected Username/Password as the base method of authentication. The
ability to authenticate via username and password is a base standard that all services must implement for
the sake of interoperability.

STAR Level 1 Requirement

STAR1003 : All implementations are required to support Username/Password for authentica-
tion.

7.4.1. Username and Password

WS-Security defines a UsernameToken element to be used to pass the username and password. Below is
the XML syntax of this element.

The Username element

41

Example 7.2. WS-Security Username and Passoword

<wsse:UsernameToken wsu:Id="...">
 <wsse:Username>...</wsse:Username>
 <wsse:Password Type="...">...</wsse:Password>
 <wsse:Nonce>...</wsse:Nonce>
 <wsu:Created>...</wsu:Created>
</wsse:UsernameToken>

Two methods to include the password are supported:

1. Plain Text, in which the password is passed in clear text

2. Hashed, in which the password is not transmitted, but instead, a one-way hash is generated from the
password and used for authentication

If a clear text password is used then it is required that the appropriate transport level encryption is used,
such as HTTPS. All passwords must be stored or persisted in an encrypted format.

7.4.2. The Username element

The <wsse:Username> element carries the client identifier. For example, if the client is a dealer and
the service provider is an OEM, the Username element will be the dealer’s identifier. Different service
providers require different types of identifications to identify their clients. Therefore, the syntax of this el-
ement is flexible and will be agreed upon between the two communication partners.

Example 7.3. Username Element

<wsse:Username>JohnDoe</wsse:Username>

Below are other possible examples on using the username field:

Example 7.4. Dealer Number

<wsse:Username>123456</wsse:Username>

Example 7.5. Unique ID that Identifies Dealer

<wsse:Username>JohnDoe</wsse:Username>

Example 7.6. Combination Dealer Number and ID

<wsse:Username>123456\JohnDoe</wsse:Username>

7.4.3. Plain Text Password

A password can be sent in clear text if a secure communication channel, such as HTTPS, is available be-
tween the sender and the receiver.

Password Digest

42

Example 7.7. Plain Text Password

<wsse:Security soap:mustUnderstand="1">
 <wsu:Timestamp>
 <wsu:Created>2003-06-04T03:48:32Z</wsu:Created>
 <wsu:Expires>2003-06-04T03:53:32Z</wsu:Expires>
 </wsu:Timestamp>
 <wsse:UsernameToken>
 <wsse:Username>JohnDoe</wsse:UserName>
 <wsse:Password
 Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText">Password</wsse:Password>
 </wsse:UsernameToken>
</wsse:Security>

7.4.4. Password Digest
When a secure channel is not available, or when the message goes through intermediaries, a password di-
gest can be used to avoid revealing the password. WS-Security defines fields and algorithms to carry au-
thentication information securely. The specifications use a one-way hashing algorithm, SHA1, to encrypt
the combination of the password, a time stamp, the creation date/time, and a nonce (randomly generated
string) to generate a digest. The resulting digest is base 64 encoded SHA1 hash value that is carried in the
UsernameToken and verified on the server side.

Below is an example of a UsernameToken carrying a password digest:

Example 7.8. Password Digest

<wsse:Security soap:mustUnderstand="1" >
 <wsu:Timestamp>
 <wsu:Created>2003-06-04T03:48:32Z</wsu:Created>
 <wsu:Expires>2003-06-04T03:53:32Z</wsu:Expires>
 </wsu:Timestamp>
 <wsse:UsernameToken wsu:Id="SecurityToken-8a45f51b-fe46-4715-bdae-e596c36ad6be">
 <wsse:Username>JohnDoe</wsse:Username>
 <wsse:Password
 Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordDigest">
 RvaxAmb2KhEQpFFJE+YXcyRy6E8==
 </wsse:Password>
 <wsse:Nonce>X6y15GC/WLYP8XY/YR3iIQ==</wsse:Nonce>
 <wsu:Created>2003-06-04T03:48:32Z</wsu:Created>
 </wsse:UsernameToken>
</wsse:Security>

The advantages of the digest method over the clear text method are:

1. Passwords are not transmitted over the wire

2. Since the Created element is included in the generation of the digest, the message recipient can reduce
the risk of replay attacks by inspecting this element and rejecting messages that are older than a set
time window.

3. To further reduce the risk of replay attacks the recipient can reject all messages that come with dupli-
cate nonce values since nonces are generated to be unique. To accomplish this functionality, the server
needs to store the nonce values of incoming messages for a period of time greater or equal to the expi-
ration duration of the message, and compare the nonces of incoming messages to the stored ones.

There are situations in which a password digest cannot be used, such as when the password is not avail-
able to both: the client and the server (when using LDAP binding, for example).

Security Error Handling

43

7.5. Security Error Handling
The WS-Security specifications define a set of SOAP Fault codes to describe different error situations
that may occur during the parsing of the security headers and authenticating or authorizing the requests.
Sending a SOAP Fault back is not required because this could be used as part of a denial of service or
cryptographic attack. However, if an error is sent back, it MUST use the SOAP Faults defined in the WS-
Security specifications.

Here is a list of the fault codes as defined in WS-Security 1.0:

Fault Code Description (Fault String)

wsse:UnsupportedSecurityToken An unsupported token was provided

wsse:UnsupportedAlgorithm An unsupported signature or encryption algorithm
was used

wsse:InvalidSecurity An error was discovered processing the
<wsse:Security> header.

wsse:InvalidSecurityToken An invalid security token was provided

wsse:FailedAuthentication The security token could not be authenticated or au-
thorized

wsse:FailedCheck The signature or decryption was invalid

wsse:SecurityTokenUnavailable Referenced security token could not be retrieved

wsu:MessageExpired Security semantics are expired.

44

STAR Level Two
This section describes the necessary components and pieces that all STAR Level 2 compliant implemen-
tations must implement.

 Chapter 8, Enhanced Security
 Chapter 9, Reliable Messaging
 Chapter 10, Attachments

47

Chapter 8. Enhanced Security

Table of Contents
8.1. Overview .. 47
8.2. WS-I Conformance Claim ... 47

8.2.1. WS-I Basic Security Profile .. 48
8.3. Digital Certificates .. 49

8.3.1. Certificate Sources ... 49
8.4. Attachment Security .. 55

8.1. Overview
The following sections define the implementation details to meet the STAR Transport Guidelines security
requirements when using Web Services for STAR Level 2 requirements. All security requirements from
STAR Level 1 still apply to STAR Level 2.

The following specifications are used to accomplish secure web services communication until further
clarifications and standards emerge from the Web Services Security technical committee in Oasis:

1. HTTPS: Provides a secure transport channel

2. Web Services Security: SOAP Messaging Security V1.0: Provides the framework for SOAP messag-
ing security.

3. Web Services Security: X.509 Token Profile V1.0: Describes the use of digital certificates.

The security methods described in this section must be applied to all the web services methods mentioned
earlier on both requests and responses.

Note

STAR Level 2 implementations must still implement all requirements from STAR Level 1 in
regards to security. STAR Level 2 requirements are enhancements to STAR Level 1. Imple-
mentations must fall back gracefully to STAR Level 1 if the trading partner can not support
the STAR Level 2 requirements.

8.2. WS-I Conformance Claim
In order to help inform clients and trading partners consuming a STAR Level 2 service using Digital Cer-
tificates for authentication, it is recommended that STAR implementations state their conformance to the
WS-I Basic Security Profile.

WS-I Basic Security Profile

48

Example 8.1. WS-I Basic Security Profile Conformance Claim

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl"
 xmlns:tns="http://example.org/myservice"
 xmlns:soapbind="http://schemas.xmlsoap.org/wsdl/soap"
 xmlns:wsi="http://ws-i.org/schemas/conformanceClaim/"
 targetNamespace="http://example.org/myservice">
 <wsdl:portType name="MyPortType">
 ...
 </wsdl:portType>
 <wsdl:binding name="MyBinding" portType="MyPortType" >
 ...
 </wsdl:binding>
 <wsdl:service name="MyService" >
 <wsdl:port name="MyPort" binding="tns:MyBinding" >
 <wsdl:documentation>
 <wsi:Claim
 conformsTo=”http://ws-i.org/profiles/basic-security/1.0/x.509-certificate-token” />
 </wsdl:documentation>
 <soapbind:address
 location="http://example.org/myservice/myport" />
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

By including the conformance claim within the WSDL for a service, clients of the service are made aware
of the endpoint's conformance to the specified target. Clients can then test to make sure that their imple-
mentations are conformant as well as verify that the web service is indeed conformant to the specified
profile/target.

8.2.1. WS-I Basic Security Profile
WS-I Basic Security Profile 1.0 consists of a set of non-proprietary web services specifications, along
with clarifications to and amplifications of those specifications which promote interoperability.

STAR Level 2 implementations when using Digital Certificates for authentication MUST implement the
rules specified by the WS-I Basic Security Profile. In particular implementations must be conformant to
section 12.

Conformance Targets. Conformance targets identify what artifacts (e.g., SOAP message, WS-
DL description) or parties (e.g., SOAP processor, end user) requirements apply to . This allows for
the definition of conformance in different contexts, to assure unambiguous interpretation of the ap-
plicability of requirements, and to allow conformance testing of artifacts (e.g., SOAP messages and
WSDL descriptions) and the behavior of various parties to a Web service (e.g., clients and service
instances). STAR implementations or derivation of STAR transport web services will align to one
of the conformance targets as mentioned in the Basic Security Profile 1.0 [http://www.ws-i.org/Pro-
files/BasicSecurityProfile-1.0.html#conformance_targets].

STAR Level Two Requirement

STAR2002: Implementations must conform to section 12, "X.509 Certificate Token [http://
www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html#x509token]" of the WS-I Basic Securi-
ty Profile 1.0 [http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html].

The WS-I Basic Security Profile indicates that the BinarySecurityToken Value Type attribute be http://
docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3. If referencing a cer-
tificate path, the BinarySecurityToken should be one of:

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html#conformance_targets
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html#conformance_targets
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html#conformance_targets
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html#x509token
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html#x509token
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html#x509token
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

Digital Certificates

49

• http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509PKIPathv1

• http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

The profile indicates that X509PKIPathv1 is recommended for efficiency.

8.3. Digital Certificates
Digital certificates can be used for a number of purposes, including digital signatures, data encryption, or
server and client authentication. Certificates are typically used to establish or verify the identity of one or
both parties in an electronic conversation. For those that need a higher level of security than is provided
by the STAR Level 1 requirement of username/password authentication, STAR requires the use of Digital
Certificates for authentication.

STAR Level Two Requirement

STAR2001: Level 2 implementations must use X509 certificates.

8.3.1. Certificate Sources
Digital certificates can be used for a number of purposes, including digital signatures, data encryption, or
server and client authentication. Certificates are typically used to establish or verify the identity of one or
both parties in an electronic conversation.

8.3.1.1. Certificate Authorities

In order for certificates to be useful, each party must be able to determine that the certificate they receive
from the other party is genuine and that it has not been forged or tampered with. The PKI infrastructure
provides this through the use of the Certificate Authority (CA). A CA is a trusted party that issues certifi-
cates on behalf of the parties that they represent. A certificate issued by a CA will contain the CA's "digi-
tal signature" to verify that the certificate is authentic. The party receiving the certificate can compare the
CA signature to a copy that it maintains in its local certificate store to verify its authenticity.

8.3.1.2. Third-Party Signed Certificates

Verisign, Entrust, and Thawte are all well-known CAs. A certificate provided by a well-known CA will
contain its root certificate, and possibly an intermediate certificate. The example below is a certificate that
was signed by Verisign. If the CA is trusted by an organization that is confident of its identity, its public
root certificate and any intermediate certificates can be added to a trusted root keystore. Applications that
use the keystore should accept any certificates that contain a valid signature from the trusted CA, with the
exception of those certificates that the CA may distribute in a Certificate Revocation List (CRL). Third-
Party certificates are most commonly used as server side SSL certificates, however they can be used for
client certificates as well.

All modern web browsers come pre-loaded with the root certificates for the well-known CAs in their
trusted certificate keystore. If you are building a custom solution that does not require a web browser, you
can either clone the keystore that ships with any browser or manually import the certificates into your
trusted keystore.

Certificate Sources

50

While the well-known CAs can be a reliable certificate source, they can also become expensive. Certifi-
cates from one of the well-known CAs must be purchased, typically on an annual basis. If you plan to
generate many certificates then this method could become cost-prohibitive.

Figure 8.1. Example of Certificate Signed by Third Party CA

8.3.1.3. Private CA-Signed Certificates

The PKI infrastructure allows any organization to create its own private CA for signing its own certifi-
cates. Certificates signed by a private CA will look similar to those signed by a well-known CA in that

Certificate Sources

51

the root certificate within the chain will belong to the CA. Figure 8.2, “Example of Certificate Signed by
Private CA” is an example of a certificate signed by a private CA.

Figure 8.2. Example of Certificate Signed by Private CA

The benefit of using a private CA is that the organization does not have to purchase its certificates. The
drawback to using a private CA is that the CA’s root certificate will not come pre-loaded with any of the
commercially shipped keystores. The owner of the CA will typically perform an out-of-band communica-
tion with its business partners to verify its identity. The CA owner will then provide each of its business
partners with a copy of its public root certificate. The business partners can then import the root certifi-
cate into their local trusted certificate keystore. Any certificates signed by the CA can then be validated
against the root certificate in their trusted keystore.

Certificate Sources

52

While private CAs may not provide the industry-wide validation that well-known CAs offer, they can still
offer a safe and reliable solution for using certificates.

8.3.1.4. Self-Signed Certificates

The third method of generating a certificate is to use a self-signed certificate. A self-signed certificate
is exactly what the name implies; a certificate signed only by the creator of the certificate. It cannot be
traced back to a signing authority and, therefore, its authenticity cannot be verified. Figure 8.3, “Example
of Self-Signed Certificate” and Figure 8.4, “Example of Self-Signed Certificate Imported” show an exam-
ple of a self-signed certificate.

Certificate Sources

53

Figure 8.3. Example of Self-Signed Certificate

Certificate Sources

54

Figure 8.4. Example of Self-Signed Certificate Imported

Self-signed certificates are typically used for development purposes as they are easier to create than CA-
issued certificates, however your business partners must load the public key for each of your self-signed
certificates into their trusted keystore to prevent their applications from throwing errors or warnings. With
CA-signed certificates, your business partners only need to load the root certificate for the CA into their
keystore and all certificates generated by the CA will be validated.

When self-signed certificates are used as server SSL certificates it may present some issues for your busi-
ness partners. If they are using an SSL appliance their network security group may not be comfortable in-
stalling a self-signed certificate into the appliance’s keystore. This could cause the appliance to reject the
SSL sessions.

Attachment Security

55

Self-signed certificates are commonly used for digital signatures or data encryption. Each party will gen-
erate a signing or encryption certificate and perform an out-of-band exchange of their public keys using a
trusted method to ensure that the source of the certificate is known.

8.3.1.5. Summary

1. Third-party certificates signed by a well-known CA can always be validated, however they must be
purchased, typically on an annual basis

2. Private CA-signed certificates provide traceability without the cost of third-party certificates, however
the root certificate for the CA must be provided to each of your business partners

3. Self-signed certificates are the simplest to create, making them ideal for development purposes. They
are also commonly used for signing or payload encryption. They provide no traceability to a trusted
CA, however and they may cause issues with SSL appliances if used as server SSL certificates.

4. Securing Web Servers and XML Data with SSL. [Fitzpatrick2008]

8.4. Attachment Security
This section provides guidance for protecting attachments when they are used with SOAP Messages. Note
that STAR Conformance all features described in the Basic Security Profile 1.0, including support for at-
tachments and security for attachments in any form by any instance is not required. It is addressed as part
of STAR Transport Large File handling mechanism.

56

57

Chapter 9. Reliable Messaging

Table of Contents
9.1. Overview .. 57

9.1.1. Terms and Definitions .. 57
9.1.2. Reliable Messaging Namespaces ... 58

9.2. Reliable Messaging Construct .. 58
9.2.1. Message Sequencing ... 59
9.2.2. WS-MakeConnection and Non-Addressable End Points .. 61
9.2.3. WS-ReliableMessaging Standardized Error Handling and Monitoring 62

9.3. Meeting STAR Guidelines Requirements ... 63
9.3.1. Message Assurance Profiles .. 63
9.3.2. WS-ReliableMessaging Delivery Assurance Features .. 64
9.3.3. WS-ReliableMessaging Message Integrity .. 65

9.4. STAR Web Service Requirements ... 65

9.1. Overview
Reliable Messaging can be critical to asynchronous Web Services communication and is REQUIRED as
part of the STAR Level 2 Rules. The STAR Web Services specification is based upon the OASIS WS-
ReliableMessaging specification v1.1 . This specification provides the foundations for providing en-
hanced Web Service communication with the following capabilities to assist in guaranteeing delivery:
Delivery assurances, Delivery Notification, Conversational integrity, and Failure notification. WS-Reli-
ableMessaging supports all of the STAR Delivery Assurance profiles.

WS-ReliableMessaging has close ties to the WS-Policy framework and recommends the use of WS-Secu-
rity specifications. WS-Policy can be used with reliable messaging but is currently not a requirement.

WS-Reliable Messaging Version 1.1 was formally adopted by OASIS in June of 2007. Currently, the
WS-I Reliable and Secure Profile, is in draft status, and part of the work is based on the new WS-Reli-
ableMessaging 1.2 specification. Some of the Rules for interoperability are based off of profiles from
WS-I Reliable and Secure profile. As this profile is updated, STAR will update these requirements. Due
to differences in the versions of Reliable Messaging supported by the profile, STAR has modified the
rules slighty.

For more information on what Reliable Messaging is, and what is is used for, the InfoQ article by Paul
Freemantle, "An Introduction to Web Services Reliable Messaging" [Freemantle2006] is a good starting
point. Freemantle covers the basics of WS-ReliableMessaging 1.1, and also reviews the changes that have
occured since WS-ReliableMessaging 1.0 was introduced. Several examples in this chapter are based on
his article.

9.1.1. Terms and Definitions
As with any specification, there are terms and definitions that should be established. The following terms
and definitions are use throughout this chapter.

Reliable Messaging Namespaces

58

• Endpoint - An entity, processor, or resource that can be referenced where Web service messages are
originated or targeted.

• Initial Sender - The endpoint which sends a message.

• Ultimate Receiver - The endpoint to which a message is delivered.

• Delivery Assurance - The guarantee that the messaging infrastructure provides on the delivery of a
message.

• Source - The endpoint that transmits the message.

• Destination - The endpoint that receives the message.

9.1.2. Reliable Messaging Namespaces

Prefix Namespace

soap http://schemas.xmlsoap.org/soap/envelope/

wsa http://www.w3.org/2005/08/addressing

wsam http://www.w3.org/2007/02/addressing/metadata

xsd http://www.w3.org/2001/XMLSchema

wsmc http://docs.oasis-open.org/ws-rx/wsmc/200702

wsrm http://docs.oasis-open.org/ws-rx/wsrm/200702

9.2. Reliable Messaging Construct
Reliable Messaging is based on a conversation between a client and server. There are many different
ways this convesation can take place and all Reliable Messaging frameworks that are being used for
STAR implementations should support all of these profiles.

Reliable Messaging 1.0 Difference

In Reliable Messaging 1.0 these profiles were built into the protocol. In Reliable Messaging
1.1, these are not sent across the wire, but are configured using policy profiles. It is the re-
sponsibility of the framework to guarantee the correct reliablity is being used.

QName Delivery Assurance

AtMostOnce The messages in the sequence will be delivered to
the application without duplication. If a message
was to be accidentally delivered more than one
time, this ensures that all additional instances of the
message are thrown away. It is possible that mes-
sages may not be delivered

AtLeastOnce

Message Sequencing

59

The messages in the sequence are assured to be de-
livered to the application at least once. If a mes-
sage is delivered more than once, it is not thrown
away and is accepted. This could result in a dupli-
cate message. If a message cannot be delivered an
error message would be raised.

ExactlyOnce The messages in the sequence are assured to be de-
livered exactly once. This assertion is equivalent
to AtMostOnce and AtLeastOnce. In this case the
message is guaranteed to be delivered or an error is
raised and any messages that arrive more than one
time are thrown away.

InOrder The messages in the sequence are assured to be de-
livered to the application in the order they were
sent. This is important when multiple messages
make up a sequence and the order in which they ar-
rive and or are processed is critical. When this as-
sertion is set, this will ensure that the receiving ap-
plication will be delivered the messages in the cor-
rect order. All messages that are sent within a se-
quence have a message number, to keep track of the
ordering.

9.2.1. Message Sequencing

Reliable Messaging is based on a Sequence of events. The various profiles of Reliable Messaging list-
ed below will help determine what the sequence will look like. Sometimes just the client will send a se-
quence, and other times both client and server may send independent sequence numbers. It is up to the
framework implementing Reliable Messaging to keep track of the sequences and acknowledgements
where necessary. A general conversation is depicted in Figure 9.1, “Reliable Messaging Conversation Se-
quence”.

Message Sequencing

60

Figure 9.1. Reliable Messaging Conversation Sequence

Trading partners may use WS-Policy to estabilish the Assurance Profiles for the Reliable Messaging con-
versation. In regards to how the messages may look when transmitted, Paul Freemantle's article provides
several useful examples.

Example 9.1. Reliable Messaging Create Sequence

<soap:body>
 <wsrm:createsequence>
 <wsrm:acksto>
 <wsa:address>http://Business456.com/serviceA/789</wsa:address>
 </wsrm:acksto>
 </wsrm:createsequence>
</soap:body>

A Reliable Messaging conversation will always start with a CreateSequence and may be terminated with
a TerminateSequence message. If a TerminateSequence is not sent, a framework may use a predefined
timeout to automatically terminate the sequence. In between there can be zero-or-many acknowledge-
ments that appear in the soap:header. These acknowledgements are in response to the message sequences
that have been received.

WS-MakeConnection and Non-Addressable End Points

61

Example 9.2. Reliable Messaging Header Acknowledgements

<soap:header>
 <wsrm:sequenceacknowledgement>
 <wsrm:identifier>http://Business456.com/RM/ABC</wsrm:identifier>
 <wsrm:acknowledgementrange lower="1" upper="1" />
 <wsrm:acknowledgementrange lower="3" upper="3" />
 </wsrm:sequenceacknowledgement>
</soap:header>

Each of the above acknowledgement refers to a Sequence Message number that was sent during a conver-
sation.

Example 9.3. Reliable Messaging Header Message Sequence Number

<soap:header>
 <wsrm:sequence>
 <wsrm:identifier>http://Business456.com/RM/ABC</wsrm:identifier>
 <wsrm:messagenumber>1</wsrm:messagenumber>
 </wsrm:sequence>
</soap:header>

The message numbers are usually incremented by one for each of the messages sent. Once the client
wants to terminate the conversation with the server, and has sent all of it's sequences, it will send a Ter-
minateSequence message. Once a conversation has been terminated, no more acknowdlegments can oc-
cur for that converstation.

9.2.2. WS-MakeConnection and Non-Addressable
End Points

Reliable Messaging 1.1 has the ability to establish a reliable delivery system with a server that may not be
addressable all the time. During a conversation, a server may set an alternative method to retrieve the rest
of the messages. If the conversation is broken, or lost in the middle, the client may try to re-establish the
conversation using the MakeConnection protocol. The client will "poll" periodically, to try and establish
a connection at the Address specified by the makeconnection element. Once connection is estabilished
it will send the request for the message that it needs to receive, and the server will respond back with the
message and an indicator if there are any more messages waiting to be sent. [WS-MC2007]

This allows for a server to be off line and for the conversation to be re-established. Some dealerships are
still using dial up connections and limited broadband connections that may not always be connected. WS-
MakeConnection is the recommended way to continue this conversation and deliver the messages.

MakeConnection may also be used in those situations where a long running process may occur. For ex-
ample, a client sends a ProcessPartsOrder BOD to a server. Depending on the size and complexity of the
PartsOrder BOD it may take a while to process. The server will drop the connection, and the client can
try to establish a connection through MakeConnection. If the a response is waiting for the client, it will
be sent, otherwise, the server will drop the connection. Eventually the process finishes and the next time
the client connects, the message is sent. There may be multiple responses waiting for the client, if so, the
server will let the client know about the other messages waiting to be delivered. MakeConnection enables
a reliable way of working asynchronously.

WS-ReliableMessaging Standard-
ized Error Handling and Monitoring

62

9.2.3. WS-ReliableMessaging Standardized Error
Handling and Monitoring

WS-ReliableMessage defines general error handling at the SOAP level via SOAP Faults. In the context of
STAR Reliable Messaging, WS-ReliableMessaging provides support for Retry (Retransmission), Recov-
ery, TimeOut and Duplicate Detection.

STAR Level 2 Requirement

STAR 2010: Error handling is REQUIRED to follow the recommendations of the WS-I Reli-
able and Secure Profile in regards to handling of errors.

Retry

WS-ReliableMessaging supports retransmission of unacknowledged messages. As described above, At-
Least-Once and Once-Ane-Only-Once / Exactly-Once require the ability to resend messages. WS-Reli-
ableMessaging allows for sending implementations to retransmit messages if an acknowledgement is not
received within an agreed upon RetransmissionInterval. The retransmitted message is intended to be ex-
actly the same as the original message and at the very least it must have the exact same Sequence Identifi-
er and MesageNumber.

STAR Level 2 Requirement

STAR 2004: If a message was not able to be sent it MUST be retried at least three times.

Recovery Processes / Message Store

WS-ReliableMessaging does not directly require persistence of messages or specify recovery procedures.
STAR requires messages to be persisted to non-volatile storage to be able to function through compo-
nent, system or network failures and to be able to support duplicate elimination, lookup of messages by
Sequence Identifier and Message ID and the ability to retransmit messages.

Time-Out

WS-ReliableMessaging supports the Time-Out feature through a senders ability to specify a Inactivi-
ty Time-out and/or BaseRetransmissionInterval policy. The receivers also can specify an Acknolwedg-
mentInterval through the use of Policy on return messages or through shared policies.

Duplicate Detection

WS-ReliableMessaging specifies that to support At-Most-Once and Exactly-Once Delivery Assurance
Profiles, receivers MUST enable message receipt without duplication. Implementation details are not
given, but at the very least, a receiver MUST prevent duplicates where Sequence Identifier and Mes-
sageNumber are repeated.

Meeting STAR Guidelines Requirements

63

9.3. Meeting STAR Guidelines Require-
ments
The STAR Transport Guidelines establish the overall requirements for Reliable Messaging. To meet these
requirements and to ensure that the terminology that is applied correctly maps to comparable Web Ser-
vices features, follow the specifications below.

9.3.1. Message Assurance Profiles
Best-Effort

To enable Best-Effort, a message is sent without using any of the WS-ReliableMessaging features:

• Parties have no WS-Policies related to reliable messaging for the messages

• No WS-ReliableMessaging headers are present in the messages

• Only applies to messages without reliability requirements

Best-Effort is the implementation supported by the STAR Level 1 interoperability rules. A STAR Level 2
implementation must support STAR Level 1.

At-Least-Once

To enable At-Least-Once with WS-ReliableMessaging:

• Reliable messaging requirements SHOULD be specified with WS-Policy on the message.

STAR Level 2 Requirement

STAR 2003: "At-Least-Once" requires the sending party to uniquely identify a message and
the receiving party to acknowledge the receipt of the message, giving the sender an auditable
record stating that the message has been received. If the sender does not receive an acknowl-
edgment of receipt in a reasonable amount of time (Time-Out), it MUST retry the message
send.

At-Most-Once

To enable At-Most-Once with WS-Reliable Messaging

• Reliable messaging requirements SHOULD be specified with WS-Policy.

• A durable policy store is required, in memory storage is not sufficient for detecting duplicate messages.

STAR Level 2 Requirement

STAR 2005: "At-Most-Once" requires a sending party to uniquely identify messages, to retry
failed messages and requires the receiving party to identify and ignore any duplicate mes-

WS-ReliableMessaging Delivery Assurance Features

64

sages. In order to know which messages to ignore, it is REQUIRED that the receiving party
persist received messages in a durable store.

Once-And-Only-Once / Exactly Once

To enable Once-And-Only-Once / Exactly Once with WS-Reliable Messaging

• Reliable messaging requirements should be specified with WS-Policy.

• A durable policy store is required, in memory storage is not sufficient for detecting duplicate messages.

STAR Level 2 Requirement

STAR 2006: "Once-And-Only-Once / Exactly-Once" requires the sender to uniquely identi-
fy each message and to retry any message that the receiver fails to acknowledge. The receiver
must acknowledge receipt of messages and ignore duplicate messages. It is REQUIRED that
the receiver persist messages in a durable store to enable duplicate elimination.

9.3.2. WS-ReliableMessaging Delivery Assurance
Features
Message Routing

Message Routing in WS-ReliableMessaging is accomplished through a combination of the underlying
Transfer protocol and WS-Addressing data elements in the messages themselves. Full behavior is detailed
under the WS-Addressing section.

Note

Message Routing

Most WS-ReliableMessaging v1.1 frameworks have configuration options on how message
routing should be handled. In some cases they may also use the WS-MakeConnection specifi-
cation to handle those situations where an end-point is not always addressable.

STAR Level 2 Requirement

STAR 2007: For indicating Routing information, STAR requires the use of WS-Addressing or
WS-MakeConnection if the end point is not directly addressable.

Acknowledgment of Receipt

Receipt of an acknowledgment indicates that an original message reached its destination. In other words,
an acknowledgment signifies only that a message has been received securely and intact, it is not a busi-
ness level acknowledgment.

STAR Level 2 Requirement

STAR 2008: Acknowledgement of Receipts MUST be enabled during the use of At-Most-
Once and Once and Only Once reliability.

WS-ReliableMessaging Message Integrity

65

WS-ReliableMessaging clearly defines the format and content of Acknowledgment messages. Acknowl-
edgment messages may be stand-alone messages or could be returned as part of another message.

A WS-ReliableMessaging SequenceAcknowledgment is an acknowledgment of receipt of one or more
messages associated with a unique sequence. The message contains the exact Sequence Identifier as sent
in the original messages and one or more AcknowledgmentRange elements, which specify exactly which
messages, by range of MessageNumbers, have been received.

STAR Level 2 Requirement

STAR 2009: STAR requires that the messages be sequenced to ensure proper delivery and
processing of related messages.

9.3.3. WS-ReliableMessaging Message Integrity
Content Integrity

WS-ReliableMessaging strongly recommends that messages by secured by WS-Security, specifically that
Content Integrity be validate by applying a digital signature to messages. Full behavior is detailed in the
Security Section. STAR Level 2 implementations must use Certificate based security when using WS-Re-
liable Messaging.

TimeToLive

WS-ReliableMessaging implements TimeToLive like functionality via the Sequence Expiration policy
assertion or the wsu:expires element on the sequence. This is detailed under the WS-Reliable Messaging
specification.

9.4. STAR Web Service Requirements
The original STAR Transport Guidelines required that the transports provide the ability to deliver mes-
sages reliably. However, theory did not always lead to reality. The state of the WS-ReliableMessaging
frameworks at the time did not lead to interoperable or easy to deploy implementations. STAR does not
specify when or how to use reliable messaging, that is up to the trading partners. The STAR Level 2 rules
on WS-Reliable Messaging only state what needs to be supported to help provide the minimum level of
interoperability.

66

67

Chapter 10. Attachments

Table of Contents
10.1. MTOM/WS-Attachments ... 67
10.2. Attachment Element .. 68

10.2.1. MTOM Attachments ... 68

10.1. MTOM/WS-Attachments
STAR specifies two methods for attachments.

• MTOM - Message Transport Optimization Mechanism [MTOM]

• SOAP with Attachments - mime-encoded attachments of binary data. [SoapAttachments]

These methods are compatible with each other as the soap envelope, binary data encoding, and HTTP
transport are the same. MTOM is supported by newer frameworks, and treats the binary data as if they
were just part of the XML data. SOAP with Attachments is the old specification but is still used by many
older frameworks. STAR RECOMMENDS that implementations use MTOM as it provides a cleaner pro-
grammatic interface for working with attachments. Since attachments are an advanced concept that not
every implementation needs, it is considered a STAR Level 2 requirement. Also due to the critical nature
of most attachments they need to be Reliable ans Secure so use of WS-ReliableMessaging is required.

The STAR attachment element is defined to allow transporting non-XML data. All internal attachments
are encoded as the xsd:base64 data type. External attachments, those that reside on a server, can be com-
municated using the provided URL identifiers.

Note

STAR also recommends the use of the Large File BOD to handle transmittal of files that may
normally be too large to provide as an attachment. The Large File BOD allows for the specifi-
cation of files to be transmitted in chunks and then re-assembled once they are received.

Binary attachments are to use the MTOM standard or the backwards compatible SOAP with Attachments
specification if MTOM is not supported by the tooling framework. The use of DIME attachments is not
supported.

STAR Level 2 Rule

STAR2013: Attachments MUST use MTOM attachments or SOAP with Attachments.
MTOM attachments are RECOMMENDED over SOAP with Attachments.

STAR2014: The use of DIME attachments MUST NOT be used.

MTOM allows an efficient way for binary data to be included in a SOAP envelope with out the need for
encoding that data in an XML wrapper. MTOM and SOAP with Attachments make use of the Multi-

Attachment Element

68

part-Mime encoding mechanism of the HTTP transport to send the data. Frameworks that support MTOM
and SOAP with Attachments then can retrieve the attachments via the reference ID.

For these attachments, this element points to the attachment that resides outside the SOAP Envelope.

Note

This element is intended primarily to support non-XML data that is not part of a BOD; for ex-
ample, transactions presented in comma-separated files. BODs that embed non-XML data,
such as an image, define their own method of encoding or referencing the binary data.

10.2. Attachment Element
The attachment element is an optional element that may appear in the SOAP BODY payload's content
section. Implementations may NOT place this attachment elsewhere in the SOAP BODY. The use of the
element is to enable the transportation of non-xml formatted data, without the need to encode it into an
XML compatible format.

Below is an example of a ProcessMessage request carrying a binary image using the attachment element:

Example 10.1. Sample Message with Attachment

<attachment xmlns="http://www.starstandards.org/webservices/2009/transport">
 <id>token</id> (optional)
 <fileName>fileName</fileName> (optional)
 <attachmentData>#@#$@$@@FADA#$ADFAAFSERWADFVadadfarW</attachmentData> (optional)
 <mimeCode>mimeCode</mimeCode> (required)
 <uriReference>http://tempuri.org</uriReference> (optional)
</attachment>

The STAR Web Services 4.0 template WSDL provided by STAR includes the necessary definition. The
attachment element itself may occur many times, and is optional.

• id - a unique identifier for this attachment. For WS-Attachments implementations this can be the Multi-
part-Mime Content identifier.

• filename - the name of the file to be created.

• attachmentData - binary encoded or MTOM/XOP information. MTOM frameworks may replace this
with a XOP element that refers to the appropriate Muiltipart-Mime Content identifier.

• mimeCode - a mime code that describes the type of content being attached. i.e. application/text, appli-
cation/xml, image/png, image/jpg

• uriReference - a URL where the attachment can be retrieved if it is stored on a server.

10.2.1. MTOM Attachments
The STAR WSDL includes the necessary information to enable frameworks to understand and create the
necessary code for MTOM based attachments. This is accomplished by specifying at the XML Schema
level the use of the xmime:expectedContentTypes="application/octet-stream".

MTOM Attachments

69

Example 10.2. WSDL MTOM Encoding

<xsd:element name="attachmentData" type="xsd:base64Binary" xmime:expectedContentTypes="application/octet-stream">
 <xsd:annotation>
 <xsd:documentation source="http://www.starstandard.org">Binary data using base64Binary encoding.</xsd:documentation>
 </xsd:annotation>
</xsd:element>

Use of the content type application/octet-stream allows for the transmittal of any type of bina-
ry data. Further information on the specific content type can be specified using the appropriate
mimeCode element for the attachment component. A framework that supports MTOM will use the
xmime:epectedContentType during code generation from the WSDL to create the appropriate processing
instructions. The following example of an MTOM/XOP encoded message comes from the XOP 1.0 speci-
fication. [XOP]

MTOM Attachments

70

Example 10.3. MTOM encoded attachment

MIME-Version: 1.0
Content-Type: Multipart/Related;boundary=MIME_boundary;
 type="application/xop+xml";
 start="<mymessage.xml@example.org>";
 startinfo="application/soap+xml; action=\"ProcessData\""
Content-Description: A SOAP message with my pic and sig in it

--MIME_boundary
Content-Type: application/xop+xml;
 charset=UTF-8;
 type="application/soap+xml; action="ProcessData\""
Content-Transfer-Encoding: 8bit
Content-ID: <mymessage.xml@example.org>

<soap:Envelope
 xmlns:soap='http://www.w3.org/2003/05/soap-envelope'
 xmlns:xmlmime='http://www.w3.org/2004/11/xmlmime'>
 <soap:Body>
 <m:data xmlns:m='http://example.org/stuff'>
 <m:photo xmlmime:contentType='image/png'>
 <xop:Include xmlns:xop='http://www.w3.org/2004/08/xop/include'
 href='cid:http://example.org/me.png'/>
 </m:photo>
 <m:sig xmlmime:contentType='application/pkcs7-signature'>
 <xop:Include xmlns:xop='http://www.w3.org/2004/08/xop/include'
 href='cid:http://example.org/my.hsh'/>
 </m:sig>
 </m:data>
 </soap:Body>
</soap:Envelope>

--MIME_boundary
Content-Type: image/png
Content-Transfer-Encoding: binary
Content-ID: <http://example.org/me.png>

// binary octets for png

--MIME_boundary
Content-Type: application/pkcs7-signature
Content-Transfer-Encoding: binary
Content-ID: <http://example.org/my.hsh>

// binary octets for signature

--MIME_boundary--

A STAR attachments element that was processed by MTOM with a XOP include would look Exam-
ple 10.4, “STAR MTOM encoded Attachment Element”.

MTOM Attachments

71

Example 10.4. STAR MTOM encoded Attachment Element

<attachment xmlns="http://www.starstandards.org/webservices/2009/transport">
 <filename>MyAttachment.png</filename>
 <attachmentData>
 <xop:Include xmlns:xop='http://www.w3.org/2004/08/xop/include'
 href='cid:http://example.org/MyAttachment.png'/>
 </attachmentData>
 <mimeCode>image/png</mimeCode>
</attachment>

The xop:Include href would refer to the Content-ID where the attached data can be retrieved from the
Multipart-Mime boundary. The generation of the XOP include is handled by the MTOM framework, and
is encoded before the message is sent over the wire by the framework. It is decoded on the receiving end.
To the programmer it looks as if it was normal XML encoded data that was sent and received.

72

73

STAR Interoperability Rules

Level 1
STAR1001 All web services must be compliant to the rules and specifications out-

lined by the WS-I Basic Profile.

STAR1002 Appropriate compliance markers are required as specified by the WS-I
Conformance Claim Attachment Mechanisms document.

STAR1003 All implementations are required to support Username/Password for au-
thentication.

STAR1004 All implementations are REQUIRED to send information over HTTPS.

STAR1005 All passwords are required to be sent as plain text or hashed.

STAR1008 All services and clients must be compliant to the general Security re-
quirements Outlined by the WS-I Basic Security Profile 1.0 .The optional
attributes defined in the Profile is also to be relaxed in the STAR Imple-
mentation.

STAR1009 All STAR Web Services are REQUIRED to understand and handle the
STAR Specific SOAP Faults.

STAR1010 All STAR soap fault error codes are REQUIRED to be be prefixed with
STAR: and the appropriate STAR error code. i.e. STAR:Invalid Struc-
ture

STAR1011 All STAR soap fault error codes are REQUIRED to appear in the stan-
dard SOAP:Fault block.

STAR1012 SOAP Faults are for Critical Processing errors only. Informational or
warning errors should not be sent as a SOAP Fault.

STAR1013 ConfirmBOD reason codes that are sent at the Warning or Informational
status, SHOULD NOT trigger a resending of the BOD.

STAR1014 WS-Security errors must send the appropriate WS-Security SOAP Fault
for the authorization being used.

STAR1015 STAR BOD Specific and Generic Transports must be message level in-
teroperable.

STAR1016 Application level error messages MUST NOT be returned with a SOAP
Fault, and MUST be returned using the appropriate BOD.

STAR1017 The service provider must keep track of contents that are deemed to have
been received by the client to avoid resending.

74

STAR1018 A SOAP Header MUST contain one manifest element for each content
element in the SOAP body.

STAR1019 A manifest is REQUIRED to have namespaceURI, element, con-
tentID, and version attributes. Even though version is listed as optional
it is REQUIRED for STAR BOD and DTS transports.

STAR1020 The client must be able to handle duplicate messages from a service
provider.

Level 2
STAR2001 Level 2 implementations MUST use X509 certificates.

STAR2002 Implementations MUST conform to section 12, "
X.509 Certificate Token [http://www.ws-i.org/Pro-
files/BasicSecurityProfile-1.0.html#x509token]" of the
WS-I Basic Security Profile 1.0 [http://www.ws-i.org/Pro-
files/BasicSecurityProfile-1.0.html].

STAR2003 "At-Least-Once" requires the sending party to uniquely identify a mes-
sage and the receiving party to acknowledge the receipt of the message,
giving the sender an auditable record stating that the message has been
received. If the sender does not receive an acknowledgment of receipt
in a reasonable amount of time (Time-Out), it MUST retry the message
send.

STAR2004 If a message was not able to be sent it MUST be retried at least three
times.

STAR2005 "At-Most-Once" requires a sending party to uniquely identify messages,
to retry failed messages and requires the receiving party to identify and
ignore any duplicate messages. In order to know which messages to ig-
nore, it is REQUIRED that the receiving party persist received messages
in a durable store.

STAR2006 "Once-And-Only-Once / Exactly-Once" requires the sender to uniquely
identify each message and to retry any message that the receiver fails to
acknowledge. The receiver must acknowledge receipt of messages and
ignore duplicate messages. It is REQUIRED that the receiver persist
messages in a durable store to enable duplicate elimination.

STAR2007 For indicating Routing information, STAR requires the use of WS-Ad-
dressing or WS-MakeConnection if the end point is not directly address-
able.

STAR2008 Acknowledgement of Receipts MUST be enabled during the use of At-
Most-Once and Once and Only Once reliability.

STAR2009 STAR requires that the messages be sequenced to ensure proper delivery
and processing of related messages.

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html#x509token
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html#x509token
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html#x509token
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

75

STAR2010 Error handling is REQUIRED to follow the recommendations of the
WS-I Reliable and Secure Profile in regards to handling of errors.

STAR2011 Security in regards to Digital Certificates MUST follow the rules out-
lined by STAR2002 and the WS-I Reliable and Secure Profile.

STAR2012 At-Most-Once or Once-And-Only-Once / Exactly-Once implementations
must support the handling of duplicate messages.

STAR2013 Attachments MUST use MTOM attachments or SOAP with Attach-
ments. MTOM attachments are RECOMMENDED over SOAP with
Attachments.

STAR2014 The use of DIME attachments MUST NOT be used.

76

77

Appendix A. STAR Level One Check
List
As specified by the STAR Transport Guidelines, each transport is to have a interoperability check list that
is voluntarily filled out by the implementor. This check list should be sent back to STAR either via elec-
tronic format or via email submission. The check lists are a way for the STAR to guage the level of adop-
tion as well as what portions of the specification are being implemented. This information is then used as
input back to the Architecture Workgroup for further review and action on updates to the transport speci-
fication.

A.1. Check List
This is the STAR Level 1 interoperability check list. Please fill this information out in a spreadsheet, and
send back to info@starstandard.org [mailto:info@starstandard.org]. If the implementation has implement-
ed the rule specified please mark with a Y. If the implementation has not implemented mark with a N. If
the rule doesn't apply to your implementation please mark as NA.

Table A.1. STAR Level 1 Check List

Rule Description Implemented (Y, N, NA)

STAR1001 All web services must be compli-
ant to the rules and specifications
outlined by the WS-I Basic Pro-
file

STAR1002 Appropriate compliance mark-
ers are required as specified by
the WS-I Conformance Claim At-
tachment Mechanisms document.

STAR1003 All implementations are required
to support Username/Password
for authentication

STAR1004 All implementations are RE-
QUIRED to send information
over HTTPS

STAR1005 All passwords are required to be
sent as plain text

STAR1008 All services and clients must be
compliant to the general Secu-
rity requirements Outlined by
the WS-I Basic Security Profile
1.0 .The optional attributes de-
fined in the Profile is also to be
relaxed in the STAR Implementa-
tion.

mailto:info@starstandard.org
mailto:info@starstandard.org

Check List

78

STAR1009 All STAR Web Services are RE-
QUIRED to understand and han-
dle the STAR Specific SOAP
Faults.

STAR1010 All STAR soap fault error codes
are REQUIRED to be be pre-
fixed with STAR: and the ap-
propriate STAR error code. i.e.
STAR:Invalid Structure

STAR1011 All STAR soap fault error codes
are REQUIRED to appear in the
standard SOAP:Fault block.

STAR1012 SOAP Faults are for Critical Pro-
cessing errors only. Information-
al or warning errors should not be
sent as a SOAP Fault.

STAR1013 ConfirmBOD reason codes that
are sent at the Warning or Infor-
mational status, SHOULD NOT
trigger a resending of the BOD.

STAR1014 WS-Security errors must send the
appropriate WS-Security SOAP
Fault for the authorization being
used.

STAR1015 STAR BOD Specific and Generic
Transports must be message level
interoperable.

STAR1016 Application level error messages
MUST NOT be returned with
a SOAP Fault, and MUST be
returned using the appropriate
BOD.

STAR1017 The service provider must keep
track of contents that are deemed
to have been received by the
client to avoid resending.

STAR1018 A SOAP Header MUST contain
one manifest element for each
content element in the SOAP
body.

STAR1019 A manifest is REQUIRED
to have namespaceURI, ele-
ment, contentID, and version
attributes. Even though version
is listed as optional it is RE-

Check List

79

QUIRED for STAR BOD and
DTS transports.

STAR1020 The client must be able to handle
duplicate messages from a ser-
vice provider.

80

81

Normative References
[WS-IBP11] WS-I. Basic Profile Version 1.1 [http://www.ws-i.org/Profiles/BasicProfile-1.1.html]. 10

Apr. 2006. 7 Jul. 2009.

[WS-IBSP10] WS-I. Basic Security Profile Version 1.0 [http://www.ws-i.org/Pro-
files/BasicSecurityProfile-1.0.html]. 30 Mar. 2007. 21 Jul. 2009.

[WS-RM2007] Organization for the Advancement of Structured Information Standards. Web Services Re-
liable Messaging Version 1.1 [http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-
cs-01.pdf]. WS-ReliableMessaging. 11 Apr. 2007. 28 Oct. 2009.

[WS-RMP2007] Organization for the Advancement of Structured Information Standards. Web Services
Reliable Messaging Policy Assertion 1.1 [http://docs.oasis-open.org/ws-rx/wsrmp/200702]. WS-
RM Policy. 14 Jun. 2007. 28 Oct. 2009.

[WS-MC2007] Organization for the Advancement of Structured Information Standards. Web Services
Make Connection Version 1.0 [http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-
os-01.pdf]. WS-MakeConnection. 14 Jun. 2007. 28 Oct. 2009.

[WS-Addr2006] W3C. WS-Addressing Core - 1.0 [http://www.w3.org/TR/2006/REC-ws-ad-
dr-core-20060509/]. WS-Addressing. 9 May 2006. 28 Oct. 2009.

[WS-AddrSOAP2006] W3C. WS-Addressing SOAP Binding [http://www.w3.org/TR/2006/REC-ws-ad-
dr-soap-20060509/]. WS-Addressing SOAP. 9 May 2006. 28 Oct. 2009.

[WS-AddrMetaData2007] W3C. WS-Addressing 1.0 - MetaData [http://www.w3.org/TR/2007/REC-ws-
addr-metadata-20070904/]. WS-Addressing MetaData. 4 Sep. 2007. 28 Oct. 2009.

[RFC2616.10] W3C. Hypertext Transfer Protocol [http://www.w3.org/Protocols/rfc2616/rfc2616.html].
HTTP/1.1. Jun. 1999. 29 Oct. 2009.

[ConformanceClaim] WS-I. WS-I Conformance Claim Attachment [http://www.ws-i.org/Pro-
files/ConformanceClaims-1.0-2004-11-15.html]. 15 Nov. 2004. 29 Oct. 2009.

[ContentTypes] W3C. Describing Media Content of Binary Data in XML [http://www.w3.org/TR/2005/
NOTE-xml-media-types-20050502/]. 2 May. 2005. 8 Dec. 2009.

[MTOM] W3C. SOAP Message Transmission Optimization Mechanism [http://www.w3.org/TR/soap12-
mtom/]. 25 Jan. 2005. 8 Dec. 2009.

[MTOM1.1] W3C. SOAP 1.1 Binding for MTOM 1.0 [http://www.w3.org/Submission/soap11mtom10/].
05 Apr. 2006. 8 Dec. 2009.

[SoapAttachments] W3C. SOAP with Attachments [http://www.w3.org/TR/SOAP-attachments]. 11 Dec.
2000. 8 Dec. 2009.

[XOP] W3C. XML-Binary Optimized Packaging [http://www.w3.org/TR/xop10/]. 25 Jan. 2005. 8 Dec.
2009.

http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-cs-01.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-cs-01.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-cs-01.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-cs-01.pdf
http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.pdf
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.pdf
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.pdf
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.pdf
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/
http://www.w3.org/TR/2007/REC-ws-addr-metadata-20070904/
http://www.w3.org/TR/2007/REC-ws-addr-metadata-20070904/
http://www.w3.org/TR/2007/REC-ws-addr-metadata-20070904/
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.ws-i.org/Profiles/ConformanceClaims-1.0-2004-11-15.html
http://www.ws-i.org/Profiles/ConformanceClaims-1.0-2004-11-15.html
http://www.ws-i.org/Profiles/ConformanceClaims-1.0-2004-11-15.html
http://www.w3.org/TR/2005/NOTE-xml-media-types-20050502/
http://www.w3.org/TR/2005/NOTE-xml-media-types-20050502/
http://www.w3.org/TR/2005/NOTE-xml-media-types-20050502/
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/Submission/soap11mtom10/
http://www.w3.org/Submission/soap11mtom10/
http://www.w3.org/TR/SOAP-attachments
http://www.w3.org/TR/SOAP-attachments
http://www.w3.org/TR/xop10/
http://www.w3.org/TR/xop10/

82

83

Non-Normative References
[Fitzpatrick2008] William Fitzpatrick and David Carver. Securing Web Servers and XML Data with SSL

[http://www.starstandard.org/articles/SecureWebServer/index.html]. Oct. 2008. Standards for
Technology in Automotive Retail. 21 Jul. 2009.

[Tost2005] Andre Tost. Loosely typed versus strongly typed Web Services [http://www.ibm.com/devel-
operworks/webservices/library/ws-loosevstrong.html]. 02 Sep. 2005. IBM Developer Works. 29
Oct. 2009.

[Butek2005] Russell Butek. Tip: xsd:any: A cautionary tale. [http://www-128.ibm.com/developer-
works/xml/library/ws-tip-xsdcaution.html]. 13 Dec. 2005. IBM Developer Works. 29 Oct. 2009.

[Freemantle2006] Paul Freemantle. An Introduction to Web Services Reliable Messaging [http://
www.infoq.com/articles/fremantle-wsrm-introduction]. 14 Sep. 2006. Infoq. 12 Nov. 2009.

http://www.starstandard.org/articles/SecureWebServer/index.html
http://www.starstandard.org/articles/SecureWebServer/index.html
http://www.ibm.com/developerworks/webservices/library/ws-loosevstrong.html
http://www.ibm.com/developerworks/webservices/library/ws-loosevstrong.html
http://www.ibm.com/developerworks/webservices/library/ws-loosevstrong.html
http://www-128.ibm.com/developerworks/xml/library/ws-tip-xsdcaution.html
http://www-128.ibm.com/developerworks/xml/library/ws-tip-xsdcaution.html
http://www-128.ibm.com/developerworks/xml/library/ws-tip-xsdcaution.html
http://www.infoq.com/articles/fremantle-wsrm-introduction
http://www.infoq.com/articles/fremantle-wsrm-introduction
http://www.infoq.com/articles/fremantle-wsrm-introduction

84

	Web Services
	Table of Contents
	Preface
	I.I. Purpose
	I.II. Scope
	I.III. Audience
	I.IV. Background
	I.V. Service Provider Requirements
	I.VI. Communication Patterns Overview

	STAR Level One
	Chapter 1. STAR Web Services Overview
	1.1. Background
	1.2. STAR Web Services Types
	1.3. Web Service Interoperability Requirements

	Chapter 2. Common Components
	2.1. Overview
	2.2. Message Packaging
	2.2.1. Notes Regarding Payloads and Attachments

	2.3. Namespaces
	2.4. Web Methods
	2.4.1. ProcessMessage
	2.4.2. PutMessage
	2.4.3. PullMessage

	2.5. The payload Manifest SOAP Header

	Chapter 3. Communication Patterns
	3.1. One-Way Communication
	3.1.1. One-Way Synchronous Communication
	3.1.2. One-Way Asynchronous Communication

	3.2. Two-Way Communication
	3.2.1. Two-Way Synchronous Communication
	3.2.2. Two-Way Asynchronous Communication

	Chapter 4. Generic Web Services Specifications
	4.1. Overview
	4.2. Generic WSDL
	4.3. Benefits and Considerations
	4.4. Pull Web Service Filter Criteria
	4.4.1. Filter Elements

	4.5. Generic WSDL Example

	Chapter 5. BOD Specific Web Service Specifications
	5.1. Overview
	5.2. BOD Specific WSDLS
	5.3. Benefits and Considerations
	5.4. BOD Specific WSDL Example

	Chapter 6. Error Handling
	6.1. HTTP Errors, SOAP Faults, and BOD Level Errors
	6.1.1. General Principles
	6.1.2. Spectrum of Error Types
	6.1.3. HTTP Errors

	6.2. SOAP Faults
	6.2.1. Sample Error Cases

	6.3. Application Level Errors

	Chapter 7. Security
	7.1. Overview
	7.2. WS-I Basic Security Profile
	7.3. WS-Security SOAP Header
	7.4. Authentication
	7.4.1. Username and Password
	7.4.2. The Username element
	7.4.3. Plain Text Password
	7.4.4. Password Digest

	7.5. Security Error Handling

	STAR Level Two
	Chapter 8. Enhanced Security
	8.1. Overview
	8.2. WS-I Conformance Claim
	8.2.1. WS-I Basic Security Profile

	8.3. Digital Certificates
	8.3.1. Certificate Sources
	8.3.1.1. Certificate Authorities
	8.3.1.2. Third-Party Signed Certificates
	8.3.1.3. Private CA-Signed Certificates
	8.3.1.4. Self-Signed Certificates
	8.3.1.5. Summary

	8.4. Attachment Security

	Chapter 9. Reliable Messaging
	9.1. Overview
	9.1.1. Terms and Definitions
	9.1.2. Reliable Messaging Namespaces

	9.2. Reliable Messaging Construct
	9.2.1. Message Sequencing
	9.2.2. WS-MakeConnection and Non-Addressable End Points
	9.2.3. WS-ReliableMessaging Standardized Error Handling and Monitoring

	9.3. Meeting STAR Guidelines Requirements
	9.3.1. Message Assurance Profiles
	9.3.2. WS-ReliableMessaging Delivery Assurance Features
	9.3.3. WS-ReliableMessaging Message Integrity

	9.4. STAR Web Service Requirements

	Chapter 10. Attachments
	10.1. MTOM/WS-Attachments
	10.2. Attachment Element
	10.2.1. MTOM Attachments

	STAR Interoperability Rules
	Appendix A. STAR Level One Check List
	A.1. Check List

	Normative References
	Non-Normative References

